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Multiple testing w/ general risk metrics

( Setup: Statistical model M, where H,, ..., H, are m hypotheses (with H; C M) )

[True (null) hypotheses for distribution P € M: Np :={i € [m]: P & Hi}j

[ Intersection hypothesis H, := N,_¢ H; for each § € 2" )

N[ Nonnegative loss (R) : 2Iml s 2lml 5 10, 00), e.g,\
Output discovery (or
rejection) set R € 2" or set fy(R) =1{|NNnR| > 0} — single false discovery
f d ts & C 21" NNR
R y fy(R) = FDPy(R) = ||R| v 1| (false discovery proportion)
. )
4 _ | | )
Desiderata: ER; (error rate) is controlled at (fixed) level a € [0,1]
Ep (fNP(R)> <a or Ep <g§£ fNP(R)> <a
(classical control) (simultaneous control)
\_ v
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The Closure Principle for FWER control

[Family-wise error rate (FWER): R controls FWER if P(|Np N R | > 0) < aforall P € M. ]

\_

R(p)={ie[m]: ps=1foralli € S}
where @ = (g)qcoim is @ set of local intersection tests.

GDS € {0,1} is alocal intersection test iff P(pg = 1) < aforall P € HS]

( Theorem (Marcus ’76, Sonneman ’82, ’08) : R is FWER controlling iff it can be written as \

J

~

\

Given p-values Py, ..., P, for m hypotheses, two FWER controlling procedures are:

RB={ic[ml:P <am RHB = R(pB) = {i € [m] : P, < 1B}

ggSB =1 {minPi <allS| } HB _ max{Pg :i € [m]and P;y < a/(m—j+ 1)forallj < i} U {0}

IS\

Since tHB > a/m, Holm-Bonferroni uniformly improves Bonferroni.

~

J

(

Classical Closure also capture all methods with simultaneous probabilistic bounds
on the FDP (Genovese + Wasserman 06, Goeman + Solari ’11, Goeman+ '21).

J
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E-values

g

nonnegative random variable e is an e-value w.r.t. to a distribution P € M if and only if Ep(e) < 1)

( )
Given e-values e, ...,e, for H,, ..., H _, define:
. m (eBH = Benjamini-
R = {R e 2lm . min e; > } RePH = argmax,_ gsc | R | Hochberg (BH)
1S a|R| applied to el_l, e

. self-consistency eBH procedure )

~
(Theorem (Wang + Ramdas ’20) : FR>C and simultaneous FDR control (and ReBH has FDR control).)

(“If we have (compound) e-values, then we

robustness to

dependence, selection rule, etc.”

(Wang + Ramdas 20, X+ ’21, Hartog + Lei ’25,

etc.)

Motivated by many developments in e-values
(sequential testing, universal inference, Chernoff

bounds, etc.)

~

J

AN

~

\_

~
*X was (compound) e-values (+eBH) all along”

1. Ren + Barber 24 (knockoffs)

2. Bashari+ '24, Lee + Ren ‘24 (conformal)
3. Li+ Zhang ’25 (BH)

(among others)

-

“All FDR controlling procedures were compound e-values + eBH all along”

(Banerjee+ ’23, Ignatiadis+ '25)

Specific to FDR, and not easy to derive improvements.
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The generalized e-Closure Principle

( E := (eg)seom is a e-collection if ey, is an e-value for each P € M. )

and
f(R)

R(E) = {R e 2lm; eg> >

\_

a

forall S € 2[’"]} such that & C ZR(E).

Theorem (ours): & has simultaneous ER; control iff there exists an e-collection E

J

( Proof:

((e—collection — ER))
if R € ZER(E), then Ep (

max
ReRFR{(E)

fNP(R)> < Ep (aey,) <

)

Qa.

\_
((ERf — e-collection)
If we are given & that has ERf control, then define

_ Maxpeg f5(R)

eg =
a
£5(R) o
If R € £ then < egforall § € 2" by definition of e (thus
0
R C RER(E)).
Ep <maxRE 1 fNP(R))

\\

< 1 by & being ER; controlling.

),
)

( Let ER; = FWER, i.e., \
fy(R)=1{|NnR| > 0}
If we set
ps = 1{eg > a'}

or
—1

Cs=@Ps-a
We have that
R(p) = argmaXp - rwer (g) |R|

Recovers standard
Closure Principle via all or

)
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nothing e-values
\_ J
f Theorem (ours): All \

FDR controlling procedures are
characterized by the e-Closure
Principle with

f(R) = FDP(R).

\_

( )

One view: an application of
beyond Neyman-Pearson
paradigm to multiple
testing (Grinwald ’24).




eBH (closed eBH) : Improving the eBH procedure

( Assume we have m arbitrarily dependent e-values €, ..., €, . )
4 R
1 . . : :
Define E with eq = —— e; Only admissible symmetric e-merging function
- (Vovk + Wang ’21)
- : y

Define the novel procedures:

~

FDP(R)
RMC .= FIPRE) = {R e olml . eg > > forall S € 2[’"]} mean-consistency
o
ReBH .— argmaxp_guc | R|  closed eBH procedure
\_ _J
r A
Theorem (ours): RMC has simultaneous FDR control via the e-Closure Principle.
Further, Z°¢ C ZMC and consequently R®BH C R®BH (uniform improvements).
\_ y,

(

Proof: Let R € &>, then

~

1 SNR| - min: e SAR| -min._,e. SNR FDP«(R
eS=|S|ZeiZ| | zeSnRz>| | zeRz>|n|.m> s(R)

| S| | S| ~ [RIVI |S|a

eS
Thus, R € BMC,

k(The minimally adaptive eBH of Ignatiadis+ '23 is also contained in RMC via similar argument.)

a
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When does eBH beat eBH?

( m = 3 hypotheses, a~! = 20 (a = 0.05) )

2
minimally adaptive eBH rejects 2: e; < Ew = 13%
o

-----------------------
-----
- -
- -
- -~
- ~
- -~
“ ~

\_

Minimally adaptive eBH rejects

m_ ~1
eBH at level a - —— ife, 2

nothing otherwise

v

FDP(RBH)

2 1
2a 1

eBH rejects all 3

observed in FWER/FDP controlling methods of Vovk + Wang ’23 and Hartog + Lei '25

( eBH adapts to non-null e-values.
( )

8 /12



BY (closed BY): improving the BY procedure

( Assume we have m arbitrarily dependent p-values py, ..., p,, - )

(" )

BY procedure (Benjamini + Yekutieli ’01)

a|R
RPY .= { Re 2" : maxp, < R] RPY := argmax,_ gy | R
L i€R mh,, y

(Theorem (Su ’18, Benjamini + Yekutieli '01) : RBY has simultaneous FDR control (and RBY has FDR control). )

k-1{p <alh}  RBYisequivalent to applying eBHto  (Vovk + Wang 21,

Define p-to-e calibrator €,(p) := : X + Wang +
a-[p-khal] e; :=¢,(p)) Ramdas "24)
Def lection E with )
efine e- CO ection £ wi closed BY procedure
= — Z es/(Py)- RBY .= RFOR(E) RBY .= argmax,_ gsy | R |
L ieS y

Theorem (ours) : RBY has simultaneous FDR control (and RBY has FDR control) via the e-Closure
Principle. Further, Y C #BY and RBY C RBY.

-
Proof: Let R € RBY and R # @&

a l{piSa/hm} 1
O"eSZTZe'S'(p"):Z S| hga-! > ) S|h T2 X R|(mh,)"1|S|hga-!
| |i€SnR iCSMR |p; | S| 1S|X ] iESMR |p; | | 1S|X ] iESMR la|R|(mh,,)~1|S] S| )]
|ISNR|
> = FDP((R).
|R|

Thus, R € RBY.
\_




Computing e-Closure procedures

-
Computing eBH discovery set efficiently:

l
Define s, = 2 e, —- we reject the r largest e-values if

Jj=1
(m—ny+r—n,)(r—n,)

g(r,n;,ny) =8, —8, +8,—58, — >0 foralln, € [r—1],n, € {r,...,m}

ra
g Is convex in n, via €; being decreasing in L.

Since there are O(m?) pairs of r and n, to check, overall complexity of O(m?*log m).
\_

s

Computing BY discovery set —- 0(m3) total to find worst case null for each discovery set consisting of k
smallest p-values (similar to Dobriban ’20 for classical Closure Principle).

Slightly less powerful but fast version: apply eBH to e; = ¢€,.(p,).

&
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Simulations

~ )
H:p, =0 (else u; = 3)

X=X,...X,) ~N(u,2)
e, = exp(4X; — 2?%/2) where A = 3 and (T = 1)
p, = 1 — (X)) where |Zi’j| = exp( — |i —j|/10)/5 and switching pos. and neg.

\_ _J
m=0.5, u=3 my=0.7, u=3 m=0.9, u=3
1.0 0 H 1.0 ° £ 1.0 ° £
0.8 0.8 0.8 eBH
o e S o (ours)
0 0.6 R — - . Dos = eBH
& 0.4 % 0.4 Lo04 B<p——a— a eBHm
0 e = [ T T 1 9| a=0.1
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mp=0.5, u=3 Mmo=0.7, u=3 m=0.9, u=3
1.0 0 H 1.0 0 H 1.0 0 H
08 T 0.8 0.8 =Y
& | 7 = " o (ours)
0 0.6 0 0.6 v Bo6 . BY
% 0.4 0.4 % 0.4 A BYm
(T [N . 0 || | m——— a= 0-1
0.2 0.2 0.2
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Conclusion

The e-Closure Principle generalizes the classical Closure Principle to

characterize general multiple testing risk control.

* Explicit derivation for tail bounds on FDP as well.

We derive uniform improvements of eBH, BY, and Su’s self-consistent
procedure under positive dependence (see paper).

Post-hoc validity, boosting, randomization, and alternative e-merging

functions in paper as well.

Combined paper on arXiv soon.

Thanks!
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e-Closure and the universality of eBH

r

Proof: %25C C #MC since Z &> |SNR|ming, forall R € #5C

ics ek
LetR € BMC Foralli € R
¢, _ FDP;(R) y ) - = SC
e =— 2 =(x|R|)”". Thus & > foralli € Rand R € &#°~.
m a al|R

_J
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( )
Define compound e-values €, ..., €, for P € M as satisfying Z [ENP(éi) <m
_ V,
g 1 =5 MC FDR \( A
I ' = — C. = ~ m
Define E with eq - Z €.and B = R TN(E) #SC.— ) R e 2" - min & >
. i€S > i€R al|R|
_ v,
4 )
Theorem (ours): RMC — pSC
\_ J



