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Multiple testing w/ general risk metrics
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Setup: Statistical model , where  are  hypotheses (with )M H1, …, Hm m Hi ⊆ M

True (null) hypotheses for distribution :  P ∈ M NP := {i ∈ [m] : P ∈ Hi}

Nonnegative loss , e.g,fN(R) : 2[m] × 2[m] → [0,∞)

 — single false discovery


 (false discovery proportion)

fN(R) = 1{ |N ∩ R | > 0}

fN(R) = FDPN(R) :=
|N ∩ R |
|R | ∨ 1

Desiderata:  (error rate) is controlled at (fixed) level ERf α ∈ [0,1]

𝔼P (fNP
(R)) ≤ α 𝔼P (max

R∈𝓡
fNP

(R)) ≤ αor

(classical control) (simultaneous control)

Output discovery (or 
rejection) set  or set 
of discovery sets 

R ∈ 2[m]

𝓡 ⊆ 2[m]

Intersection hypothesis  for each  HS := ∩i∈S Hi S ∈ 2[m]



/12

The Closure Principle for FWER control
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Theorem (Marcus ’76, Sonneman ’82, ’08) :  is FWER controlling iff it can be written as 



where  is a set of local intersection tests. 


R
R(φ) = {i ∈ [m] : φS = 1 for all i ∈ S}
φ = (φS)S∈2[m]

Family-wise error rate (FWER):  controls FWER if  for all .R P( |NP ∩ R | > 0) ≤ α P ∈ M

Given p-values  for  hypotheses,  two FWER controlling procedures are:P1, …, Pm m

RB = {i ∈ [m] : Pi ≤ α/m}

φB
S = 1 {min

i∈S
Pi ≤ α/ |S |}

RHB = R(φB) = {i ∈ [m] : Pi ≤ tHB}

tHB = max{P(i) : i ∈ [m] and P( j) ≤ α/(m − j + 1) for all j ≤ i} ∪ {0}

Since , Holm-Bonferroni uniformly improves Bonferroni.tHB ≥ α/m

  is a local intersection test iff  for all  .φS ∈ {0,1} P(φS = 1) ≤ α P ∈ HS

Classical Closure also capture all methods with simultaneous probabilistic bounds 
on the FDP (Genovese + Wasserman ’06, Goeman + Solari ’11, Goeman+ ’21).
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E-values
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A nonnegative random variable  is an e-value w.r.t. to a distribution  if and only if . e P ∈ M 𝔼P(e) ≤ 1

“If we have (compound) e-values, then we 
robustness to

dependence, selection rule, etc.”

(Wang + Ramdas ’20, X+ ’21, Hartog + Lei ’25, 
etc.)

“X was (compound) e-values (+eBH) all along”

1. Ren + Barber ’24 (knockoffs)

2. Bashari+ ’24, Lee + Ren ‘24 (conformal)

3. Li + Zhang ’25 (BH)

(among others)

Theorem (Wang + Ramdas ’20) :  and simultaneous FDR control (and  has FDR control).𝓡SC ReBH

Given e-values  for , define: 


                                   


e1, …, em H1, …, Hm

𝓡SC := {R ∈ 2[m] : min
i∈R

ei ≥
m

α |R | }
self-consistency eBH procedure

ReBH = argmaxR∈𝓡SC |R |

Motivated by many developments in e-values 

(sequential testing, universal inference, Chernoff 
bounds, etc.)

(eBH = Benjamini-
Hochberg (BH)

applied to )e−1

1 , …, e−1
m

“All FDR controlling procedures were compound e-values + eBH all along”

(Banerjee+ ’23, Ignatiadis+ ’25) Specific to FDR, and not easy to derive improvements.
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The generalized e-Closure Principle
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Theorem (ours):  has simultaneous  control iff there exists an e-collection  
and


 such that .

𝓡 ERf E

ℛERf(E) = {R ∈ 2[m] : eS ≥
fS(R)

α
 for all S ∈ 2[m]} 𝓡 ⊆ ℛERf(E)

Proof: 


One view: an application of 
beyond Neyman-Pearson 
paradigm to multiple 
testing (Grünwald ’24).

(e-collection ) 


If , then .

→ ERf

R ∈ ℛERf(E) 𝔼P ( max
R∈ℛERf(E)

fNP
(R)) ≤ 𝔼P (αeNP) ≤ α

( e-collection)  
If we are given  that has  control, then define 





If  then  for all  by definition of  (thus 

).


 by  being  controlling.

ERf →
𝓡 ERf

eS =
maxR∈𝓡 fS(R)

α
R ∈ 𝓡

fS(R)
α

≤ eS S ∈ 2[m] eS

𝓡 ⊆ ℛERf(E)

𝔼P (eNP) =
𝔼P (maxR∈𝓡 fNP

(R))
α

≤ 1 𝓡 ERf

 is a e-collection if  is an e-value for each . E := (eS)S∈2[m] eNP
P ∈ M Let , i.e.,ERf = FWER

fN(R) = 1{ |N ∩ R | > 0}
If we set

φS = 1{eS ≥ α−1}

eS = φS ⋅ α−1
or

We have that

R(φ) = argmaxR∈ℛFWER(E) |R |

Recovers standard 
Closure Principle via all or 

nothing e-values


Theorem (ours): All 
FDR controlling procedures are 
characterized by the e-Closure 

Principle with

.fS(R) = FDPS(R)
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 (closed eBH) : Improving the eBH procedureeBH
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Assume we have  arbitrarily dependent e-values  .m e1, …, em

𝓡MC := ℛFDR(E) = {R ∈ 2[m] : eS ≥
FDPS(R)

α
 for all S ∈ 2[m]}

Define  with  E eS =
1

|S | ∑
i∈S

ei
Only admissible symmetric e-merging function

(Vovk + Wang ’21)

mean-consistency

Theorem (ours):  has simultaneous FDR control via the e-Closure Principle. 
Further,  and consequently  (uniform improvements).

𝓡MC

𝓡SC ⊆ 𝓡MC ReBH ⊆ ReBH

Proof: Let , then


   


Thus, .

R ∈ 𝓡SC

eS =
1

|S | ∑
i∈S

ei ≥
|S ∩ R | ⋅ mini∈S∩R ei

|S |
≥

|S ∩ R | ⋅ mini∈R ei

|S |
≥

|S ∩ R |
|R | ∨ 1

⋅
m

|S |α
≥

FDPS(R)
α

R ∈ 𝓡MC

(The minimally adaptive eBH of Ignatiadis+ ’23 is also contained in  via similar argument.) 𝓡MC

ReBH := argmaxR∈𝓡MC |R | closed eBH procedure

Define the novel procedures:
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When does  beat eBH?eBH
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 hypotheses, m = 3 α−1 = 20 (α = 0.05)

e1 = 60 e2 = 29 e3 = 11

e{1,2} = 44.5 e{2,3} = 20

e{1,2,3} = 33 1
3

eBH rejects 1: 


e2 <
3

2α
= 30

minimally adaptive eBH rejects 2: e3 <
2

3α
= 13 1

3

 rejects all 3eBH

FDPS(ReBH)
α

1
3α

= 6 2
3

2
3α

= 13 1
3

1
α

= 20

Minimally adaptive eBH rejects 


{eBH at level α ⋅ m
m − 1 if e[m] ≥ α−1

nothing otherwise

 adapts to non-null e-values. 

(observed in FWER/FDP controlling methods of Vovk + Wang ’23 and Hartog + Lei ’25)

eBH
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 (closed BY): improving the BY procedureBY
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Assume we have  arbitrarily dependent p-values  .m p1, …, pm

                                  
𝓡BY := {R ∈ 2[m] : max
i∈R

pi ≤
α |R |
mhm }                                   
RBY := argmaxR∈𝓡BY |R |

Theorem (Su ’18, Benjamini + Yekutieli ’01) :  has simultaneous FDR control (and  has FDR control).𝓡BY RBY

Define p-to-e calibrator . 
ek(p) :=
k ⋅ 1{p ≤ α /hk}
α ⋅ ⌈p ⋅ khkα−1⌉

 is equivalent to applying eBH to 
.

RBY

ei := em(pi)

Define e-collection  with 


. 

E
eS =

1
|S | ∑

i∈S

e|S|(pi) 𝓡BY := ℛFDR(E) RBY := argmaxR∈𝓡BY |R |
closed BY procedure

Theorem (ours) :  has simultaneous FDR control (and  has FDR control) via the e-Closure 
Principle. Further,  and .

𝓡BY RBY

𝓡BY ⊆ 𝓡BY RBY ⊆ RBY

BY procedure (Benjamini + Yekutieli ’01)

(Vovk + Wang ’21, 

X + Wang + 
Ramdas ’24) 

Proof: Let  and 


  

.


Thus, .

R ∈ 𝓡BY R ≠ ∅

α ⋅ eS ≥
α

|S | ∑
i∈S∩R

e|S|(pi) = ∑
i∈S∩R

1{pi ≤ α /h|S|}
⌈pi |S |h|S|α−1⌉

≥ ∑
i∈S∩R

1
⌈pi |S |h|S|α−1⌉

≥ ∑
i∈S∩R

1
⌈α |R | (mhm)−1 |S |h|S|α−1)⌉

≥
|S ∩ R |

|R |
= FDPS(R)

R ∈ 𝓡BY
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Computing e-Closure procedures
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Computing  discovery set efficiently:


Define  —- we reject the  largest e-values if


  for all 


 is convex in  via  being decreasing in . 

Since there are  pairs of  and  to check, overall complexity of .

eBH

si =
i

∑
j=1

e(i) r

g(r, n1, n2) := sm − sn1
+ sr − sn2

−
(m − n1 + r − n2)(r − n2)

rα
≥ 0 n2 ∈ [r − 1], n1 ∈ {r, …, m}

g n2 e(i) i
O(m2) r n1 O(m2 log m)

Computing  discovery set —- ) total to find worst case null for each discovery set consisting of  
smallest p-values (similar to Dobriban ’20 for classical Closure Principle).


Slightly less powerful but fast version: apply  to .

BY O(m3 k

eBH ei = em(pi)
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Simulations
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:  (else  
   

 where  and  
 where  and switching pos. and neg.   

Hi μi = 0 μi = 3)
X := (X1, …, Xm) ∼ 𝒩(μ, Σ)
ei = exp(λXi − λ2/2) λ = 3 (Σ = Id)
pi = 1 − Φ(Xi) |Σi, j | = exp( − | i − j | /10)/5
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Conclusion
• The e-Closure Principle generalizes the classical Closure Principle to 

characterize general multiple testing risk control.


• Explicit derivation for tail bounds on FDP as well.


• We derive uniform improvements of eBH, BY, and Su’s self-consistent 

procedure under positive dependence (see paper).


• Post-hoc validity, boosting, randomization, and alternative e-merging 

functions in paper as well.

12

Combined paper on arXiv soon.

Thanks!
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e-Closure and the universality of eBH
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Define compound e-values  for  as satisfying 
ẽ1, …, ẽm P ∈ M ∑
i∈NP

𝔼NP
(ẽi) ≤ m

Define  with  and E eS =
1
m ∑

i∈S

ẽi �̃�MC := ℛFDR(E)

Theorem (ours): �̃�MC = �̃�SC

                                  
�̃�SC := {R ∈ 2[m] : min
i∈R

ẽi ≥
m

α |R | }

Proof:  since  for all  

Let . For all 


  . Thus  for all  and .

�̃�SC ⊆ �̃�MC ∑
i∈S

ẽi ≥ |S ∩ R | min
i∈R

ẽi R ∈ �̃�SC

R ∈ �̃�MC i ∈ R

e{i} =
ẽi

m
≥

FDP{i}(R)
α

= (α |R | )−1 ẽi ≥
m

α |R |
i ∈ R R ∈ �̃�SC


