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Motivating example: selecting 
most effective drug candidates

2

Initially, there are  drug candidates we wish to estimate the efficacy of.K

…

Data: X1, X2, X3, X4, …, XK

Select ones with positive effect for estimation based on data

Construct confidence intervals 
(CIs) for each selected drug
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Outline

1. Introduce the post-selection inference problem.


2. Compare our method (e-BY procedure) to the current 
state-of-the-art (BY procedure).


3. Describe a novel category of confidence intervals: e-CIs.


4. Results of simulations in a nonparametric setting.
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Possible statistical guarantees under 
selection bias

4

CI guarantee: ℙ(θ*i ∈ Ci(α)) ≥ 1 − α
We have:  is the -CI we can construct for the th parameter. Ci(α) (1 − α) i

We want: Given any selected set , output CIs  at corrected 
levels  such that we can maintain some form of statistical validity.

ℛ C1(α1), …, CK(αK)
α1, …, αK

 are the parameters we are initially interested in estimating.θ*1 , …, θ*K

Using some selection rule  to derive a selection set

 of parameters to estimate induces a selection bias.

ℛ
𝒮 = ℛ(X)
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False coverage rate (FCR): 
aggregate statistical validity

5

FCP :=
∑
i∈𝒮

1{θ*i ∉ Ci(αi)}

|𝒮 | ∨ 1
FCR := 𝔼[FCP]

FCR is an aggregate measure of false coverage 
across the CIs of selected parameters.

Benjamini and Yekutieli (2005) show how to 
control FCR with corrected marginal CIs 

Analog of false discovery rate (FDR) from multiple testing

Define an empirical quantity: false coverage proportion (FCP).
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 (Bonferroni) : select if 99.2% CI above 0ℛ
: select if 95% CI above 0ℛ

Interlude: for conditional coverage under arbitrary 
selection rules, we can’t use marginal CIs

6

Assume we want 95% conditional 
coverage so we output 

-CI for each  
(Bonferroni correction)

(1 − 0.05/K) θ*i

If the selection rule is “select  when the 
th -CI is above the 0”… 

i
i (1 − 0.05/K)

Then, we always fail to cover when 
!θ*i ≤ 0

0

Conditional coverage: ℙ(θ*i ∈ Ci(αi) ∣ i ∈ 𝒮) ≥ 1 − α



/ 24

Data X ∼ ℙ

True parameters θ*1 , …, θ*KTrue distribution ℙ

Select set of parameters  to 
estimate using a selection rule 

𝒮 = ℛ(X)
ℛ

Construct CIs at corrected levels 
 for each  (e.g. e-BY, BY)1 − αi i ∈ 𝒮

Selected parameters: 
 for θ*i i ∈ 𝒮

Sample

Ensure post-selection control of the 
false coverage rate: FCR ≤ δ

Post-selection inference with FCR guarantees  

7
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Outline

1. Introduce the post-selection inference problem.


2. Compare our method (e-BY procedure) to the current 
state-of-the-art (BY procedure).


3. Describe a novel category of confidence intervals: e-CIs.


4. Results of simulations in a nonparametric setting.
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Current state-of-the-art: the BY procedure

9

We have access to marginal CIs for each :  
s.t.  for any .

i ∈ {1,…, K} Ci(α)
ℙ(θ*i ∈ Ci(α)) ≥ 1 − α α ∈ (0,1)

In the known /independent (or PRDS) case: output  for each .ℛ Ci ( δRmin
i

K ) i ∈ 𝒮

Benjamini and Yekutieli (2005)

In the unknown /dependent case: output  for each .ℛ Ci ( δ |𝒮 |
KℓK ) i ∈ 𝒮

 is the th harmonic number.ℓK ≈ log K K

 is a value that depends on the selection rule.1 ≤ Rmin
i ≤ |𝒮 |

Theorem (BY 2005): The BY procedure (above) ensures FCR ≤ δ

BY procedure:
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Calculating  requires knowledge of the selection rule.Rmin
i

10

Rmin
i := min { |ℛ(X1, …, xi, …, XK) | : xi ∈ 𝒳i and i ∈ ℛ(X1, …, xi, …, XK)}

1.  can be changed to any other possible data value , but all other data 
( ) remain fixed.


2. The th parameter, , remains in the resulting selection set with changed .

Xi xi

X1, …, Xi−1, Xi+1, …, Xk

i θi xi

Recall that  is our sampled data.X = (X1, …, XK)

Many known selection rules achieve the upper bound of  e.g. CI above threshold, Benjamini-
Hochberg (BH) etc.

|𝒮 |

For unknown or ad-hoc selection 
rules, no guarantees can be made 
i.e. cannot do better than  

(Bonferroni) and output .

Rmin
i = 1

Ci ( δ
K )

Thus, fallback to 

.Ci ( δ |𝒮 |
KℓK )

To compute , we require full knowledge of 
the selection rule .
Rmin

i
ℛ

Scientists arrive at selection sets in ad hoc 
ways, through messy analysis:

 may be impossible to describe!ℛ

 can be sophisticated even if well specified 
e.g. interactive, recursive procedure between 

CI construction and selection

ℛ
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Our method: the e-BY procedure
We have access to an e-CI for each .i ∈ {1,…, K}

Output  for each Ci ( δ |𝒮 |
K ) i ∈ 𝒮

Theorem (ours): The e-BY procedure above ensures FCR ≤ δ

1. There is no reliance on selection rule (through ) or change based 
on dependence structure. 

Rmin
i

2. E-BY requires access to e-CIs, a special class of CIs.

e-BY procedure (ours):
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Head-to-head comparison of e-BY vs. BY

12

e-BY BY

Knowledge of 
selection rule None required Needed through Rmin

i

Correction factor

Always output 

Ci ( δ |𝒮 |
K )

Know  and Independence/PRDS: 




Otherwise: 

ℛ

Ci ( δRmin
i

K )
Ci ( δ |𝒮 |

KℓK )
Type of CI All CIsOnly e-CIs

The BY procedure is a special case of the e-BY procedure obtained by 
calibrating CIs to e-CIs — e-BY generalizes BY.

Only e-CIs

All CIs (calibrate each CI to an e-CI)



/ 24

Outline

1. Introduce the post-selection inference problem.


2. Compare our method (e-BY procedure) to the current 
state-of-the-art (BY procedure).


3. Describe a novel category of confidence intervals: e-CIs.


4. Results of simulations in a nonparametric setting.
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E-value: e is for expectation (is bounded by 1)

14

 is an e-value w.r.t. a set of distributions with 
parameter  if and only if:
E(θ)

θ
1.  is nonnegative, and

2.

E(θ)
𝔼θ[E(θ)] ≤ 1

E-values are analogs of p-values that have been extensively studied 
in recent work in testing and estimation (Shafer, Vovk, Grünwald, 
ourselves, and others).

Fact:  for any . ℙθ (E(θ) ≥
1
α ) ≤ α α ∈ (0,1)

True by Markov’s inequality!
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e-CI: CI derived from an e-value

15

 is an e-CI if and only if there are e-values  where:C E(θ)

C(α) := {θ ∈ Θ : E(θ) <
1
α }

Denote the universe of parameters as .Θ

Fact: Every e-CI  is a valid confidence interval (CI).C
Proof: Let  be the true parameter.θ*

ℙθ*(θ* ∉ C(α)) = ℙθ* (E(θ*) ≥
1
α ) ≤ α

This is by Markov’s inequality, again
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Proof of FCR control of e-BY

16

𝔼
∑
i∈𝒮

1 {θ*i ∉ Ci ( δ |𝒮 |
K })

|𝒮 | ∨ 1

Recall e-BY outputs  for each Ci ( δ |𝒮 |
K ) i ∈ 𝒮 where  is an e-CI for .Ci θi

= 𝔼
∑
i∈𝒮

1 {Ei(θ*i ) ≥ K
δ |𝒮 | }

|𝒮 | ∨ 1

= 𝔼
∑
i∈𝒮

1 {Ei(θ*i )δ |𝒮 | /K ≥ 1}
|𝒮 | ∨ 1

≤
K

∑
i=1

𝔼 [ Ei(θ*i )δ |𝒮 | /K
|𝒮 | ∨ 1 ]

≤
δ
K

K

∑
i=1

𝔼 [Ei(θ*i )
|𝒮 |

|𝒮 | ∨ 1 ]

Proof that  for e-BY:FCR ≤ δ

≤ δ

(  and )1{x ≥ 1} ≤ x 𝒮 ⊆ {1,…, K}

(def. of e-value)
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Outline
1. Introduce the post-selection inference problem.


2. Compare our method (e-BY procedure) to the current state-of-
the-art (BY procedure).


3. Describe a novel category of confidence intervals: e-CIs. 

A. Existing CIs are already e-CIs (universal inference, 
confidence sequences).


B. CIs can be calibrated e-CIs (and BY is special case of e-BY)


4. Results of simulations in a nonparametric setting.
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Universal inference CI is an e-CI

18

Universal inference (Wasserman, Ramdas, Balakrishnan 2020) is a method for 
deriving e-CIs whenever the likelihood function is known.

Receive i.i.d. data  and split equally into two datasets A1, …, An D0, D1

Estimate any likelihood  using  (alternative likelihood)̂p 1 D1

: maximum likelihood of  under null (set of distributions with parameter )p D0 θ

For any , perform a likelihood ratio test between:θ ∈ Θ
H0 : θ is the true parameter, H1 : θ is not the true parameter

CUI(α) := {θ ∈ Θ : α ̂p 1(D0) < max
p∈Pθ

p(D0)} .

We can use universal inference to:

• estimate number of components in GMM in high dimensions

• estimate sparsity of regression problem

• determine if a distribution satisfy certain shape-constraints

• estimate parameters whenever we have likelihoods
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Stopped confidence sequences are e-CIs

19

In the sequential regime, samples come one at a time in a stream A1, A2, …

An -confidence sequence is a sequence of intervals  where (1 − α) (Ct(α))t
ℙ(∀t ∈ ℕ : θ* ∈ Ct(α)) ≥ 1 − α

Example (Howard et al. 2021): If  are 1-sub-Gaussian,Ai

Ct(α) :=
1
t

t

∑
i=1

Ai ± log log 2t + 0.72 log(10.4/α)
t

is a -confidence sequence for estimating .(1 − α) θ* = 𝔼[Ai]

“Proof”: Confidence sequences are constructed by inverting nonnegative 
supermartingales.

Nonnegative supermartingales are e-values at stopping times.

Theorem: Stopped confidence sequences ( ) are e-CIs.Cτ(α)

or equivalently

 for any stopping time  (i.e. data dependent time).ℙ(θ* ∈ Cτ(α)) ≥ 1 − α τ

We can build confidence sequences for any situation where we have Chernoff bounds 
(Howard et al. 2020, 2021).
We can also extend universal inference to the sequential regime.

Confidence sequences based off of nonnegative martingales are admissible (Ramdas et al. 2020).
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Calibration: deriving an e-CI from any CI

20

We can always calibrate a CI into an e-CI.
Based line of work about calibrating p-values into e-values (Shafer, Vovk, Wang, etc.).

A calibrator is a upper semicontinuous, nonincreasing function 

 such that: . 


Define  .

f : [0,1] × [0,∞] ∫
1

0
f(x) dx ≤ 1

f −1(x) = sup {p : f(p) ≥ x}

Let  be an arbitrary CI.C

Theorem: The following calibrated CI is an e-CI: 

Ccal(α) := C (f −1 ( 1
α )) .

Examples of calibrators:

• All or nothing:  for any 


• Power:  for any 

f(p) =
1
β

1{p ≤ β} β ∈ (0,1)

f(p) = κpκ−1 κ ∈ (0,1)
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Calibration implies BY = e-BY under dependence

21

fBY(δ,K)(p) =
K
δ

⋅
1

⌈KℓK p/δ⌉

The BY  calibrator:(δ, K)

With CI , recall that the BY procedure outputs for each :Ci i ∈ 𝒮

Ci ( δ |𝒮 |
KℓK )

With the e-CI calibrated with   from , e-BY outputs:Ccal
i fBY(δ,K) Ci

Ccal
i ( δ |𝒮 |

K ) = Ccal
i (fBY(δ,K)−1 ( KℓK

δ |𝒮 | )) = Ci ( δ |𝒮 |
KℓK )

The BY procedure is a special case of e-BY.
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Simulations for bounded random variables indicate e-BY 
is tighter under dependence

23

Nonparametric setting: estimate the mean of bounded random variables in [−1,1]
Hoeffding based CI for the BY procedure and e-CI for the e-BY procedure.
Select parameters that have solely positive -CIs       (1 − δ) δ = 0.1

Known  and independentℛ Unknown  or dependentℛ

e-BY tighter than BYBY tighter than e-BY
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Takeaways
1. e-BY procedure provides FCR control with no assumptions about dependence 

and the selection rule, as opposed to the BY procedure.


A. Use BY only when selection rule is known and the data is independent.


B. Otherwise (unknown selection rule or dependent data), use e-BY.


2. BY is a special case of e-BY.


3. e-CIs can are already used in many settings e.g. universal inference, sequential 
settings, Chernoff methods.


4. e-CIs are particularly tight in the sequential regime.


5. (In paper) e-BY has sharp FCR control, and is an admissible inference 
procedure.

24
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