Post-selection inference with e-value based confidence intervals

International Seminar on Selective Inference March 24, 2022

Ziyu Xu (Neil) (CMU) Joint work with:

Carnegie

Jniversitv

Ruodu Wang Aaditya Ramdas (Waterloo) (CMU)

arXiv: 2203.12572

Motivating example: selecting most effective drug candidates

Initially, there are K drug candidates we wish to estimate the efficacy of.

Select ones with positive effect for estimation based on data

- 1. Introduce the post-selection inference problem.
- 2. Compare our method (e-BY procedure) to the current state-of-the-art (BY procedure).
- 3. Describe a novel category of confidence intervals: e-Cls.
- 4. Results of simulations in a nonparametric setting.

Possible statistical guarantees under selection bias

 $\theta_1^*, \ldots, \theta_K^*$ are the parameters we are initially interested in estimating.

We have: $C_i(\alpha)$ is the $(1 - \alpha)$ -CI we can construct for the *i*th parameter. <u>CI guarantee</u>: $\mathbb{P}(\theta_i^* \in C_i(\alpha)) \ge 1 - \alpha$

Using some selection rule \mathscr{R} to derive a selection set

 $\mathcal{S} = \mathcal{R}(\mathbf{X})$ of parameters to estimate induces a selection bias.

We want: Given any selected set \mathscr{R} , <u>output CIs $C_1(\alpha_1), \ldots, C_K(\alpha_K)$ </u> at corrected levels $\alpha_1, \ldots, \alpha_K$ such that we can maintain some form of statistical validity.

False coverage rate (FCR): aggregate statistical validity

Define an empirical quantity: false coverage proportion (FCP).

$$FCP := \frac{\sum_{i \in \mathcal{S}} \mathbf{1} \{\theta_i^* \notin C_i(\alpha_i)\}}{|\mathcal{S}| \lor 1} \quad FCR := \mathbb{E}[FCP]$$

FCR is an <u>aggregate measure</u> of false coverage across the CIs of selected parameters.

Analog of false discovery rate (FDR) from multiple testing

Benjamini and Yekutieli (2005) show how to control FCR with corrected marginal CIs

Interlude: for conditional coverage under arbitrary selection rules, we <u>can't</u> use marginal CIs

Conditional coverage:
$$\mathbb{P}(\theta_i^* \in C_i(\alpha_i) \mid i \in \mathcal{S}) \ge 1 - \alpha$$

 \mathscr{R} : select if 95% CI above 0 \mathscr{R} (Bonferroni) : select if 99.2% CI above 0

Assume we want 95% conditional coverage so we output (1 - 0.05/K)-CI for each θ_i^* (Bonferroni correction)

If the selection rule is "select *i* when the *i*th (1 - 0.05/K)-CI is above the 0"...

Then, we always fail to cover when $\theta_i^* \leq 0!$

Post-selection inference with FCR guarantees

- 1. Introduce the post-selection inference problem.
- 2. Compare our method (e-BY procedure) to the current state-of-the-art (BY procedure).
- 3. Describe a novel category of confidence intervals: e-Cls.
- 4. Results of simulations in a nonparametric setting.

Current state-of-the-art: the BY procedure

We have access to marginal CIs for each $i \in \{1, ..., K\}$: $C_i(\alpha)$ s.t. $\mathbb{P}(\theta_i^* \in C_i(\alpha)) \ge 1 - \alpha$ for any $\alpha \in (0,1)$.

Theorem (BY 2005): The BY procedure (above) ensures FCR $\leq \delta$

Benjamini and Yekutieli (2005)

Calculating R_i^{\min} requires knowledge of the selection rule.

Recall that $\mathbf{X} = (X_1, \dots, X_K)$ is our sampled data.

$$\mathbf{R}_{i}^{\min} := \min \{ |\mathscr{R}(X_{1}, \dots, X_{i}, \dots, X_{K})| : x_{i} \in \mathscr{X}_{i} \text{ and } i \in \mathscr{R}(X_{1}, \dots, X_{i}, \dots, X_{K}) \}$$

- 1. X_i can be changed to any other possible data value x_i , but all other data $(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_k)$ remain fixed.
- 2. The *i*th parameter, θ_i , remains in the resulting selection set with changed x_i .

Many known selection rules achieve the upper bound of |S| e.g. CI above threshold, Benjamini-Hochberg (BH) etc.

To compute R_i^{\min} , we require <u>full knowledge</u> of the selection rule \mathscr{R} .

Scientists arrive at selection sets in ad hoc ways, through messy analysis: \mathscr{R} may be impossible to describe!

 \mathscr{R} can be sophisticated even if well specified e.g. interactive, recursive procedure between CI construction and selection For unknown or ad-hoc selection rules, no guarantees can be made i.e. cannot do better than $R_i^{\min} = 1$ (Bonferroni) and output $C_i\left(\frac{\delta}{K}\right)$. Thus, fallback to $C_i\left(\frac{\delta|\mathcal{S}|}{K\ell_K}\right)$.

Head-to-head comparison of e-BY vs. BY

The BY procedure is a special case of the e-BY procedure obtained by calibrating CIs to e-CIs — e-BY generalizes BY.

- 1. Introduce the post-selection inference problem.
- 2. Compare our method (e-BY procedure) to the current state-of-the-art (BY procedure).
- 3. Describe a novel category of confidence intervals: e-Cls.
- 4. Results of simulations in a nonparametric setting.

E-value: e is for expectation (is bounded by 1)

 $E(\theta)$ is an **e-value** w.r.t. a set of distributions with parameter θ if and only if:

1. $E(\theta)$ is nonnegative, and

2.
$$\mathbb{E}_{\theta}[E(\theta)] \leq 1$$

E-values are analogs of p-values that have been extensively studied in recent work in testing and estimation (Shafer, Vovk, Grünwald, ourselves, and others).

Fact:
$$\mathbb{P}_{\theta}\left(E(\theta) \geq \frac{1}{\alpha}\right) \leq \alpha$$
 for any $\alpha \in (0,1)$.
True by Markov's inequality!

e-CI: CI derived from an e-value

Denote the universe of parameters as Θ .

C is an **e-CI** if and only if there are e-values $E(\theta)$ where:

$$C(\alpha) := \left\{ \theta \in \Theta : E(\theta) < \frac{1}{\alpha} \right\}$$

Fact: Every e-CI C is a valid confidence interval (CI).

Proof: Let θ^* be the true parameter.

$$\mathbb{P}_{\theta^*}(\theta^* \notin C(\alpha)) = \mathbb{P}_{\theta^*}\left(E(\theta^*) \ge \frac{1}{\alpha}\right) \le \alpha$$

This is by Markov's inequality, again

Proof of FCR control of e-BY

Recall e-BY outputs $C_i\left(\frac{\delta|\mathcal{S}|}{K}\right)$ for each $i \in \mathcal{S}$ where C_i is an e-CI for θ_i .

- 1. Introduce the post-selection inference problem.
- 2. Compare our method (e-BY procedure) to the current state-ofthe-art (BY procedure).
- 3. Describe a novel category of confidence intervals: e-Cls.
 - A. Existing CIs are already e-CIs (universal inference, confidence sequences).
 - B. Cls can be calibrated e-Cls (and BY is special case of e-BY)
- 4. Results of simulations in a nonparametric setting.

Universal inference CI is an e-CI

Universal inference (Wasserman, Ramdas, Balakrishnan 2020) is a method for deriving e-CIs whenever the <u>likelihood function</u> is known.

Receive i.i.d. data A_1, \ldots, A_n and split equally into two datasets D_0, D_1 For any $\theta \in \Theta$, perform a likelihood ratio test between:

 $H_0: \theta$ is the true parameter, $H_1: \theta$ is not the true parameter Estimate any likelihood \hat{p}_1 using D_1 (alternative likelihood)

$$C^{\mathrm{UI}}(\alpha) := \left\{ \theta \in \Theta : \alpha \hat{p}_1(D_0) < \max_{p \in P_1} p(D_0) \right\}$$

p: maximum likelihood of D_0 under null (set of distributions with parameter θ)

We can use universal inference to:

- estimate number of components in GMM in high dimensions
- estimate sparsity of regression problem
- determine if a distribution satisfy certain shape-constraints
- estimate parameters whenever we have likelihoods

Stopped confidence sequences are e-Cls

In the sequential regime, samples come one at a time in a stream A_1, A_2, \ldots

An $(1 - \alpha)$ -confidence sequence is a sequence of intervals $(C^t(\alpha))_t$ where $\frac{\mathbb{P}(\forall t \in \mathbb{N} : \theta^* \in C^t(\alpha)) \ge 1 - \alpha}{\text{ or equivalently}}$ $\mathbb{P}(\theta^* \in C^\tau(\alpha)) \ge 1 - \alpha \text{ for any stopping time } \tau \text{ (i.e. data dependent time).}$ Example (Howard et al. 2021): If A_i are 1-sub-Gaussian, $C^t(\alpha) := \frac{1}{t} \sum_{i=1}^t A_i \pm \sqrt{\frac{\log \log 2t + 0.72 \log(10.4/\alpha)}{t}}$ is a $(1 - \alpha)$ -confidence sequence for estimating $\theta^* = \mathbb{E}[A_i]$.

Theorem: Stopped confidence sequences ($C^{\tau}(\alpha)$) are e-Cls. **"Proof":** Confidence sequences are constructed by inverting nonnegative supermartingales.

Nonnegative supermartingales are e-values at stopping times.

We can build confidence sequences for any situation where we have Chernoff bounds (Howard et al. 2020, 2021).

We can also extend universal inference to the sequential regime.

Confidence sequences based off of nonnegative martingales are admissible (Ramdas et al. 2020).

Calibration: deriving an e-Cl from any Cl

We can always calibrate a CI into an e-CI.

Based line of work about calibrating p-values into e-values (Shafer, Vovk, Wang, etc.).

A **calibrator** is a upper semicontinuous, nonincreasing function $f: [0,1] \times [0,\infty]$ such that: $\int_0^1 f(x) \, dx \le 1$. Define $f^{-1}(x) = \sup \{p : f(p) \ge x\}$.

Let C be an arbitrary CI.

Theorem: The following calibrated CI is an e-CI:

$$C^{\text{cal}}(\alpha) := C\left(f^{-1}\left(\frac{1}{\alpha}\right)\right).$$

Examples of calibrators:

• All or nothing:
$$f(p) = \frac{1}{\beta} \mathbf{1} \{ p \le \beta \}$$
 for any $\beta \in (0,1)$

• Power: $f(p) = \kappa p^{\kappa-1}$ for any $\kappa \in (0,1)$

Calibration implies BY = e-BY under dependence

The BY (δ, K) calibrator: $f^{\text{BY}(\delta, K)}(p) = \frac{K}{\delta} \cdot \frac{1}{\lceil K \ell_K p / \delta \rceil}$

With CI C_i , recall that the BY procedure outputs for each $i \in S$:

$$C_i\left(\frac{\delta|\mathcal{S}|}{K\ell_K}\right)$$

With the e-CI C_i^{cal} calibrated with $f^{\text{BY}(\delta,K)}$ from C_i , e-BY outputs:

$$C_{i}^{\text{cal}}\left(\frac{\delta|\mathcal{S}|}{K}\right) = C_{i}^{\text{cal}}\left(f^{\text{BY}(\delta,K)^{-1}}\left(\frac{K\ell_{K}}{\delta|\mathcal{S}|}\right)\right) = C_{i}\left(\frac{\delta|\mathcal{S}|}{K\ell_{K}}\right)$$

The BY procedure is a special case of e-BY.

- 1. Introduce the post-selection inference problem.
- 2. Compare our method (e-BY procedure) to the current state-ofthe-art (BY procedure).
- 3. Describe a novel category of confidence intervals: e-Cls.
 - A. Existing CIs are already e-CIs (universal inference, confidence sequences).
 - B. Cls can be calibrated e-Cls (and BY is special case of e-BY)
- 4. Results of simulations in a nonparametric setting.

Simulations for bounded random variables indicate e-BY is tighter under dependence

Nonparametric setting: estimate the mean of bounded random variables in [-1,1]Hoeffding based CI for the BY procedure and e-CI for the e-BY procedure. Select parameters that have solely positive $(1 - \delta)$ -CIs $\delta = 0.1$

Takeaways

- 1. e-BY procedure provides FCR control with no assumptions about dependence and the selection rule, as opposed to the BY procedure.
 - A. Use BY only when selection rule is known and the data is independent.
 - B. Otherwise (unknown selection rule or dependent data), use e-BY.
- 2. BY is a special case of e-BY.
- 3. e-Cls can are already used in many settings e.g. universal inference, sequential settings, Chernoff methods.
- 4. e-Cls are particularly tight in the sequential regime.
- 5. (In paper) e-BY has sharp FCR control, and is an admissible inference procedure.

Thanks!

arXiv: 2203.12572