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Online multiple testing problem
Stream of hypotheses we wish to test:

H1 H2 H3 H4 …

X1 X2 X3 X4 …Data for each hypothesis 
(e.g., from an experiment).

 is the set of hypotheses 
are truly null  


(e.g., treatment has no effect)

𝒩 ⊆ ℕ

R1 R2 R3 R4
Discovery sets 

Rt := {i ∈ [t] : Pi ≤ αi}
…

P1 P2 P3 P4
P-values: statistics that are 
superuniform under the null. 

ℙ(Pt ≤ s) ≤ s for all s ∈ [0,1] if Ht ∈ 𝒩

α1 α2 α3 α4 Make a discovery if , i.e., 

on hypotheses we believe are non-null

Pt ≤ αt…

…

False discovery proportion (FDP) 

FDP(Rt) :=
|𝒩 ∩ Rt |
|Rt | ∨ 1

False discovery rate (FDR) 

FDR(Rt) := 𝔼[FDP(Rt)]

Goal: Ensure  
for all  for a fixed 

FDR(Rt) ≤ α
t ∈ ℕ
α ∈ [0,1]



Doubly sequential inference
Imagine we have teams of data scientists doing A/B testing…

Samples/Time
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(2) dependence from overlap

H1

H2

H3

H4

H5

⋮

τ1 τ3 τ2 τ4 τ5

(1) data-dependent stopping times

E-values are the predominant method for solving (1), 

 and our new method addresses (2)

Desiderata: a method that is robust to  
(1) data-dependent stopping times 
(2)  dependence among hypotheses



Sequential testing requires e-processes
Consider a stream of data   

and we construct a p-value  at each step  from  
X1, X2, …,

Pi i X1, …, Xi

We wish to have an anytime-valid p-value: 
ℙ(∃i ∈ ℕ : Pi ≤ s) ≤ s for all s ∈ [0,1]

This means that rejecting the null at step , i.e., early stopping, is a 
valid test.

τ = min{i : Pi ≤ α}

Anytime-valid p-values are frequently used in A/B testing [1] and traditionally has 
used likelihood ratios (e.g. mSPRT [2]).

a fixed time (standard) p-value: 
ℙ(Pi ≤ s) ≤ s for all s ∈ [0,1] and i ∈ ℕ

An e-process is a nonnegative process  where  is an e-value for any stopping time . 
All known anytime-valid p-values can be written as   

(or is dominated by such an anytime-valid p-value).

(Ei) Eτ τ
Pi = 1/ max

j≤i
Ei

Practically, we always have access to e-processes in the 
sequential regime.

[1] Johari, Pekelis, Walsh. Always Valid Inference: Continuous Monitoring of A/B Tests. Operations Research (2022) 
[2] Robbins. Statistical Methods Related to the Law of the Iterated Logarithm. Ann. Math. Stat (1970) 
[3] Ramdas, Ruf, Larsson, Koolen. Admissible anytime-valid sequential inference must rely on nonnegative martingales. arXiv (2023)




Overview of online multiple testing

Foster and Stine (2008)

Saharoni and Rosset (2014)

mFDR control at stopping 
times (not just fixed times).mFDR(RT) :=

𝔼[ |𝒩 ∩ RT | ]
𝔼[ |RT | ]

SAFFRON algorithm 

Ensures: ̂FDP t :=

t
∑
i=1

αt ⋅
1{Pt > λt}

1 − λt

|Rt−1 | + 1
≤ α

Ramdas, Zrnic, 
Wainwright, Jordan (2019)LORD algorithm 

Ensures: ̂FDP t :=

t
∑
i=1

αt

|Rt−1 | + 1
≤ α

Javanmard and Montanari (2018)

Ramdas, Yang, Wainwright, Jordan (2017)

Tian and Ramdas (2019) ADDIS = SAFFRON + discarding of conservative nulls

Zrnic et. al (2020, 2021) Extends LORD and SAFFRON for batches, under local 
dependence and arbitrary dependence

Bao et al. (2024) Online FCR control for selective conformal prediction intervals 
(subsequent)

Weinstein and Ramdas (2020) Online control FCR for selective confidence intervals

All of the above require independent or conditional (on the past) p-values (or 
confidence intervals). 

See Robertson et al. (2023) for a comprehensive survey



r-LOND algorithm [3] 

αr-LOND
t := αγt ⋅ ( |Rt−1 | + 1)/ℓt

Prior work

Theorem [3]:  for all  for arbitrarily dependent p-values   is guaranteed by r-LOND.FDR(Rt) ≤ α t ∈ ℕ (Pt)

 ℓt := Σt
i=11/i ≈ log t

where  are nonnegative and sum to 1(γt)

LOND algorithm [4] 

αLOND
t := αγt( |Rt−1 | + 1)

Theorem :  for all  for independent [4] or positively dependent PRDS p-values [3]   
is guaranteed by LOND.

FDR(Rt) ≤ α t ∈ ℕ (Pt)

Our contribution: With e-values, we can use the more the powerful LOND, 
even under arbitrary dependence.

[1] Blanchard and Roquain. Two simple sufficient conditions for FDR control. Elec. J. Stat. (2008) 
[2] Benjamini and Yekutieli. The control of the false discovery rate in multiple testing under dependency. Ann. of Stat. (2001)

[3] Zrnic, Ramdas, Jordan. Asynchronous online testing of multiple hypotheses. JMLR (2021) 
[4] Javanmard and Montanari. Online rules for control of false discovery rate and false discovery exceedance. Ann. of Stat. (2018)




e-LOND: FDR control under arbitrary dependence
e-LOND algorithm  

αe-LOND
t := αγt ⋅ ( |Rt−1 | + 1)

Theorem (ours):  for all  for arbitrarily dependent e-values   is guaranteed by e-
LOND, and  for all , i.e., strictly dominates r-LOND.

FDR(Rt) ≤ α t ∈ ℕ (Et)
αe-LOND

t > αr-LOND
t t ∈ ℕ

Proof

 =  = FDR(Rt) 𝔼 [ |𝒩 ∩ Rt |
|Rt | ∨ 1 ] ∑

i∈𝒩

𝔼 [ 1{Ei ≥ 1/(αe-LOND
i )}

|Rt | ∨ 1 ]
 ≤ ∑

i∈𝒩

𝔼 [ 1{Ei ≥ 1/(αe-LOND
i )}

|Ri−1 | + 1 ] ≤ ∑
i∈𝒩

𝔼 [ αe-LOND
i ⋅ Ei

|Ri−1 | + 1 ]
 ≤ ∑

i∈𝒩

𝔼 [ αγi ⋅ ( |Ri−1 | + 1) ⋅ Ei

|Ri−1 | + 1 ]  ≤ ∑
i∈𝒩

αγi𝔼[Ei] ≤ α



More power through randomization

Ue-LOND algorithm  

αUe-LOND
t := αγt ⋅ ( |Rt−1 | + 1)/Ut

Theorem (ours):  

1.  for all  for arbitrarily dependent e-values   is guaranteed by Ue-LOND, and 
 for all  almost surely. 


2.  for all  for arbitrarily dependent p-values   is guaranteed by Ur-LOND, and has 
strictly greater power than r-LOND.

FDR(Rt) ≤ α t ∈ ℕ (Et)
αUe-LOND

t > αe-LOND
t t ∈ ℕ

FDR(Rt) ≤ α t ∈ ℕ (Pt)

Let  be a sequence of random variables that are uniformly distributed on [0,1] 

and independent of  or 

(Ut)
(Et) (Pt)

Idea: Let  and  be dependent RVs.  
Define the stochastically rounded e-value [1]


 

̂α ∈ [0,1] E > 0

S ̂α (E) := ̂α−1 ⋅ 1{U ≤ ̂αE}

1{S ̂α (E) ≥ ̂α−1} = 1{E ≥ U ⋅ ̂α−1}𝔼[E] ≥ 𝔼[S ̂α (E)]
Has bounded expectation Discovery threshold property

[1] Xu and Ramdas. More powerful multiple testing under dependence via randomization. arXiv (2023) 

Ur-LOND algorithm  

αUr-LOND
t := αγt ⋅ (⌊( |Rt−1 | + 1)/(ℓt ⋅ Ut)⌋ ∧ t)

Similar ideas can be applied to improve r-LOND

(by its equivalence to being calibrated p-value + e-LOND)



Empirical results
Simulation: testing  where  is bounded.


  vs. 

Data for each hypothesis was a sample without replacement from the same population.




Negative dependence among 


μ = 𝔼[X] X ∈ [±4]
H0 : μ ≤ 0 H1 : μ > 0

⇓
(Et)

(More simulation results in paper)



Selection by conformal prediction (Jin and Candès 2023)

For each , our goal is to test the stochastic null hypothesis, i.e., 

 


where  is a known fixed or data dependent threshold.

t ∈ {1,2,…}
H0,t : Yn+t ≤ cn+t

cn+t

Goal: Large rejection sets  with FDR control.
R

Conformalized selection (batch, no weighting) 

1. Construct conformal p-values .


2. Apply the BH (Benjamini-Hochberg) procedure, i.e., 

, reject 

 smallest p-values

Pt :=

n
∑
i=1

1{Vi ≤ ̂Vn+t}

n + 1

̂k := max {k ∈ [m] :
m

∑
i=1

1{Pt ≤ αk /m} ≥ k}
̂k

We have a calibration dataset of size :  
n (X1, Y1), …, (Xn, Yn)

We also receive a batch of  test points:  
m Xn+1, . . . , Xn+m

Assume that  are exchangeable 

(calibration dataset + stream are all exchangeable).

(X1, Y1), …, (Xn+m, Yn+m)

Assumption: exchangeability

Let  be a scoring function that is monotonic in its second argument, 
i.e.,   


Example: 

V
y ≤ c ⇒ V(x, y) ≤ V(x, c) for all x

V(x, y) := y − ̂μ (x)

  for ,   for Vi := V(Xi, Yi) i ∈ [n] ̂Vn+t := V(Xn+t, cn+t) t ∈ {1,2,…}

Assumption: monotonic score function

Proof idea: 
Consider “oracle” p-values: 





 (by monotonicity)


 are positively dependent, i.e., PRDS 
(Bates et. al. 2021).


BH provides FDR control for PRDS p-values.

P̄t :=

n
∑
i=1

1{Vi ≤ Vn+t}

n + 1
{H0,t is true } ⇒ {P̄t ≤ Pt}

P1, …, P̄t, …, Pm



The calibration dataset  are i.i.d. draws from 
(X1, Y1), …, (Xn, Yn) 𝒫

Assumption: known covariate shift (weighted exchangeability) We also receive a batch of  test points:  

where  are i.i.d. draws from 

m Xn+1, . . . , Xn+m
(Xn+1, Yn+1), …, (Xn+m, Yn+m) 𝒬

Covariate shift is known, i.e., w(x) :=
d𝒬
d𝒫

(x, y)

Weighted conformalized selection (Jin and Candès 2023)

Weighted conformalized selection (WCS batch)
Construct multiple weighted conformal p-values for 

each  

 

if  and 0 otherwise.

t ∈ [m] :

P(t)
ℓ :=

w(Xn+t)1{ ̂Vn+t ≤ ̂Vn+ℓ} +
n

∑
i=1

w(Xi)1{Vi ≤ ̂Vn+ℓ}

w(Xn+t) +
n

∑
i=1

w(Xi)

t ≠ ℓ
P1

P2

Pm

⋮

0 P(1)
2 P(1)

m
…

P(2)
1 0 P(2)

m

P(m)
1 P(m)

2 0

…

…
⋮ ⋮ ⋮⋱

E1 E2 Em

Apply e-BH to  to get .Et :=
m

| R̂t |α
⋅ 1 {Pt ≤

α | R̂t |
m } R

R̂1

R̂2

R̂m

⋮

Apply BH procedure to  to 
get rejection set .

(P(t)
ℓ )ℓ∈[m]

R̂t

…



Define the following weighted oracle p-values:


,


 if  and otherwise 0

P̄t :=
w(Xn+t) +

n
∑
i=1

w(Xi)1{Vi ≤ ̂Vn+t}

w(Xn+t) +
n

∑
i=1

w(Xi)

P̄(t)
ℓ :=

w(Xn+t)1{Vn+t ≤ ̂Vn+ℓ} +
n

∑
i=1

w(Xi)1{Vi ≤ ̂Vn+ℓ}

w(Xn+t) +
n

∑
i=1

w(Xi)
ℓ ≠ t

(validity sketch) 

 is the weighed cdf of the  calibration points combined with th test point. 

Note that  is a function of  and . Since , we have that  .

In addition,  is superuniform. 


Let   the rejection set of BH applied to . Then,  is an e-value by .


Note that . 

 


(key cases are  and )


̂F[n]∪{n+t} :=
∑n

i=1 w(Xi) ⋅ δVi
+ w(Xn+t) ⋅ δVn+t

w(Xn+t) + ∑n
i=1 w(Xi)

n t

P̄(t)
ℓ

̂Vn+ℓ
̂F[n]∪{n+t}

̂Vn+ℓ ⊥ Vn+t P̄t ⊥ P̄(t)
ℓ ∣ ̂F[n]∪{n+t}

P̄t ∣ ̂F[n]∪{n+t}

R̄t (P̄(t)
ℓ )ℓ∈[m] Ēt :=

K
α | R̄t |

1 {P̄t ≤
α | R̄t |

K } P̄t ⊥ R̄t ∣ ̂F[n]∪{n+t}

{H0,t is true} ⇒ {P̄t ≤ Pt}
{H0,t is true, Pt ≤ α | R̂t | /K} ⇒ {R̂t = R̄t}

{ ̂Vn+t ≤ ̂Vn+ℓ} ⇒ {P(t)
ℓ = P̄(t)

ℓ } { ̂Vn+t > ̂Vn+ℓ} ⇒ {P(t)
ℓ , P̄(t)

ℓ ≤ Pt}
(power)  

, so 
(can deploy stochastic rounding to 

have power when )

P(t)
ℓ ≈ Pt ≈ P(t)

j | R̂t | ≈ |R |

| R̂t | < |R |

Naive proof idea: 
Natural weighted p-values: 





are not PRDS —-  and  could be arbitrarily 
dependent.

Pt :=
w(Xn+t) +

n
∑
i=1

w(Xi)1{Vi ≤ ̂Vn+t}

w(Xn+t) +
n

∑
i=1

w(Xi)

w(Xn+t) Vn+t

FDR control for WCS batch

Hence  satisfies Et :=
K

α | R̂t |
1 {Pt ≤

α | R̂t |
K } 𝔼[Et ⋅ 1{H0,t is true}] ≤ 𝔼[Ēt] ≤ 1



Default approach to online weighted conformalized selection

Online weighted conformalized selection (attempt) 
Do the following for each  
1. Construct multiple weighted conformal p-values (i.e., for each ): 

.


2. Apply LOND to  to derive .


3. Let .


Apply e-LOND or (Ue-LOND) to  to get 

t ∈ {1,2,…}
ℓ ∈ [t]

P(t)
ℓ :=

w(Xn+t)1{ ̂Vn+t ≤ ̂Vn+ℓ} +
n

∑
i=1

w(Xi)1{Vi ≤ ̂Vn+ℓ}

w(Xn+t) +
n

∑
i=1

w(Xi)

(P(t)
ℓ )ℓ∈[t−1] R̂t−1

Et :=
1{Pt ≤ αγt( | R̂t−1 | + 1)}

αγt( | R̂t−1 | + 1)
(Et) (Rt)

(validity) 
 Pt ⊥ R̂t−1 ∣ ̂F[n]∪{n+t}

(power) | R̂t−1 | ≈ |Rt−1 |

E-value desiderata: Create (dependent) e-values





where we want the following to be true

Et :=
1{Pt ≤ αγt( | R̂t−1 | + 1)}

αγt( | R̂t−1 | + 1) Where does this go wrong?

Let  be the rejection set from running 
LOND on .

R̄t−1
(P̄(t)

ℓ )ℓ∈[t−1]

 is a valid e-

value, 

but we can no longer relate  to !

Ēt :=
1{Pt ≤ αγt( | R̄t−1 | + 1)}

αγt( | R̄t−1 | + 1)

R̂t−1 R̄t−1

This is because LOND is not step-up like BH 
—- it does not reject all p-values below a 

threshold.



P(ℓ),−
t ≤ P̄(ℓ)

t ≤ P(ℓ),+
t

Online weighted conformalized selection (ours) 
Do the following for each  
1. Construct multiple pairs of weighted conformal p-values (i.e., for each ): 

.


2. Apply LOND to  and   to derive  and 


3. Let  (note that ).


Apply e-LOND (or Ue-LOND) to  to get 

t ∈ {1,2,…}
ℓ ∈ [t − 1]

P(t),−
ℓ :=

n
∑
i=1

w(Xi)1{Vi ≤ ̂Vn+ℓ}

w(Xn+t) +
n

∑
i=1

w(Xi)
, P(t),+

ℓ :=
w(Xn+t) +

n
∑
i=1

w(Xi)1{Vi ≤ ̂Vn+ℓ}

w(Xn+t) +
n

∑
i=1

w(Xi)
,

(P(t),−
ℓ )ℓ∈[t−1] (P(t),+

ℓ )ℓ∈[t−1] R̂−
t−1 R̂+

t−1

Et :=
1 {Pt ≤ αγt( | R̂+

t−1 | + 1)}
αγt( | R̂−

t−1 | + 1)
| R̂+

t−1 | ≤ | R̄t−1 | ≤ | R̂−
t−1 |

(Et) (Rt)

Our approach to online weighted conformalized selection

Theorem (ours):  for all  when e-LOND or Ue-LOND is applied to  as defined 
above.

FDR(Rt) ≤ α t ∈ ℕ (Et)

Theorem (ours):  for all  when r-LOND or Ur-LOND is applied to , i.e., the 
standard weighted p-values.

FDR(Rt) ≤ α t ∈ ℕ (Pt)

And we can also show a result for arb. dep. p-values as well: 



Results on drug discovery dataset
Drug discovery dataset of  = chemical structure, binds to target protein


We have access to neural network predictor  and  


Sample th drug (i.e., run an experiment to learn ) to determine if it binds with probability 



Resulting covariate shift of .

X Y =

̂μ μ̄ =
1

ntrain

ntrain

∑
i=1

̂μ(Xi)

t Yn+t
p(Xn+t) := sigmoid( ̂μ(Xn+t) − μ̄) ∧ 0.8

w(x) ∝ 1/p(x)

Av
g.
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Extensions and conclusion

Takeaways: 


- Unknown dependence is commonplace in the doubly sequential framework modern data science 

falls into.


- With e-values, we can avoid correction when controlling the FDR under unknown or arbitrary 

dependence.


- We can utilize randomization to maximize power for e-LOND and r-LOND


- We can develop an online weighted conformal selection procedure using e-values to handle 

dependence between weighted conformal p-values.


- We can also control the false coverage rate (FCR) of e-value based CIs for any selection rule 

using a CI analog of e-LOND (see paper)


