

Dept. of Statistics and Data Science Machine Learning Dept. Carnegie Mellon University

Dynamic Algorithms for Online Multiple Testing

Ziyu Xu (Neil)

Aaditya Ramdas

ept. of Statistics and Data Scienc fachine Learning Dept. arnegie Mellon University

Dynamic Algorithms for Online Multiple Testing

Ziyu Xu (Neil)

Aaditya Ramdas

VS.	VS.	VS.	Problem: testing many different hypotheses
Color	Amount	Style	Our goal is to reject
H_1	H_2	H_3	(make true discoveries)

"online"

(Foster and Stine 2008)

Assumptions on p-values

 $\mathbf{Pr}(p_k \leq s) \leq s$ for all $s \in (0, 1)$ if H_k is null (superuniformity) p_k potentially small if H_k is non-null

If we reject a null hypothesis, we make a "false discovery"

Key error metrics we wish to keep controlled

Alpha-investing: a method for selecting alpha values while maintaining error control

Contributions

- 1. First "practically" powerful algorithm with FDX control.
- 2. "Dynamic" algorithm for allocating alpha values that improves over prior methods.
- 3. First method that provides FDR control at stopping times. (see paper)

The estimator view of FDP (LORD)

(Ramdas et al. 2017, Javanmard and Montanari 2018.)

The estimator view of FDP (SupLORD)

 $\mathbf{Pr}(\exists k \in \mathbb{N}: \mathrm{FDP}_k > \overline{\mathrm{FDP}}_k) \leq \delta$ (Katsevich and Ramdas 2021)

 $\overline{\text{FDP}}$ upper bounds FDP with high probability

SupLORD (our method) ensures this

SupLORD surpasses prior methods empirically

p-values from 1-sided z-test on i.i.d. Gaussians.

 $\delta = 0.05, \epsilon = 0.15$ (LORDFDX, SupLORD) $\ell = 0.05$ (Bonferroni, LORD)

Dynamic allocation of alpha values

 $\text{Wealth for SupLORD:} \quad W(k) = \max\left\{c \in \mathbb{R}: \overline{\log}\left(\frac{1}{\delta}\right) \cdot \frac{c+1+\sum\limits_{i=1}^k \alpha_i}{1+\text{ \# of vejections at } k} \leq \epsilon\right\}$

How much can I spend before $\overline{\text{FDP}}$ exceeds ϵ ?

Solution: use larger alpha values that are more uniform in size.

Wealth no longer increasing

Dynamic allocation outperforms other methods

Takeaways

- 1. FDX control can be achieved using a high probability estimator of the FDP.
- 2. Previous algorithms underutilized wealth by not spending it fast enough. We can increase power by using larger alpha values.

Thanks!