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Experimental conditions (e.g., 

technique idiosyncrasies, external 

factors) 
CRISPR perturbations via sgRNA

Cell-wise gene expression counts

Goal: Test for causal effect of gene perturbation on cell-wise expression counts.
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H0 : ψATE = 𝔼[Y1 − Y0] ≠ 0

Linear proximal causal inference [1]. 
•  

•  
this implies…


•

𝔼[Y ∣ A, Z, C] = β0 + ψ ATE A + βT
CC

𝔼[W ∣ A, Z, C] = α0 + MTC

𝔼[Y ∣ A, Z] = β′￼0 + ψATEA + (β′￼w)T𝔼[W ∣ A, Z]

We can run two stage-least squares to approximate  and estimate .𝔼[W ∣ A, Z] ψATE

[1] Liu et al. Regression-Based Proximal Causal Inference. 
arXiv:2402.00335, 2024.
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Second stage: ψ̂ 2SLS = (W̄TW̄ )W̄TY

 runtime —- very fast.

(does not account for neg.

controls)

O(n)



/14

Computing the proxy and true 
p-value via least squares

9
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 to compute .

 to compute .


Total complexity:


O(nd4) ̂A−1 and B
O(d6) ̂A−1B̂( ̂A−1)T

O(nd4 + d6)
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2000 genes pre-filtered [1] from original cancer marker scCRISPR 
dataset [2]. multimodal single-cell screens. 

[1] Papalexi et al. Characterizing the molecular regulation of inhibitory immune 
checkpoints with

multimodal single-cell screens. Nature Genetics, 2021.

[2] Townes et al. Feature selection and dimension reduction for single-cell RNA-Seq 
based on a multinomial model Genome Biology, 2-10.
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∑
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1{P̃i ≤ αk /K} ≥ k} R = {k ∈ [K ] : Pk ≤ αk*/K}
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 for fixed 


K I0 ⊆ [K ]
R ⊆ [K ]

FDR = 𝔼 [ | I0 ∩ R |
|R | ∨ 1 ] ≤ α α ∈ [0,1]

Theorem (ours): If  are independent,  are arbitrarily dependent, and  
satisfies active p-value dependence requirement, then .

(P1, …, PK) (Q1, …, QK) (Pi, Qi)
FDR ≤ α(1 + log(1/α))
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• Active hypothesis testing framework + application for proximal causal inference in scCRISPR 
screening

• Extensions
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• Interactive + multilevel computation of proxies.
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Thanks!

“Active multiple testing with proxy p-values and e-values” 
arXiv:2502.05715

https://arxiv.org/abs/2502.05715

