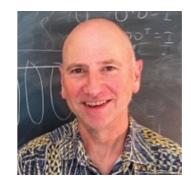
Active multiple testing w/ proxy p-value and e-values

DeGroot Workshop @ CMU 2025

Joint work with:

Neil Xu

Catherine Wang



Larry Wasserman

Aaditya Ramdas

Carnegie Mellon University

Large scale hypothesis testing can meet resource constraints...

• Computational constraints: Computing the statistic for every hypothesis is slow

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate

proxy statistics

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate

proxy statistics

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate

proxy statistics

Approximations

• In-sample fitting once

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate proxy statistics

- In-sample fitting once
- Neural networks

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate proxy statistics

- In-sample fitting once
- Neural networks

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate proxy statistics

- In-sample fitting once
- Neural networks
- Outcome predictions

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate

proxy statistics

- In-sample fitting once
- Neural networks
- Outcome predictions
 - Machine learning predictors

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate

proxy statistics

- In-sample fitting once
- Neural networks
- Outcome predictions
 - Machine learning predictors

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate proxy statistics

- In-sample fitting once
- Neural networks
- Outcome predictions
 - Machine learning predictors
- Mediators

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate proxy statistics

Approximations

- In-sample fitting once
- Neural networks
- Outcome predictions
 - Machine learning predictors

Mediators

• Preliminary outcomes

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate proxy statistics

Approximations

- In-sample fitting once
- Neural networks
- Outcome predictions
 - Machine learning predictors

Mediators

• Preliminary outcomes

Goal: Use proxy statistics to derive

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate

proxy statistics

Approximations

- In-sample fitting once
- Neural networks
- Outcome predictions
 - Machine learning predictors
- Mediators
 - Preliminary outcomes

Goal: Use proxy statistics to derive

1. valid statistics for every hypothesis (correctness)

Large scale hypothesis testing can meet resource constraints...

- Computational constraints: Computing the statistic for every hypothesis is slow
 - Cross-fitting + sampling.
 - Nonconvex optimization.
- Cost constraints: obtaining the data is expensive
 - treating patients
 - sending out coupons/promotions.
- *Time constraints:* true outcome is in the future.
 - panel/longitudinal experiments

...but we often have "cheap" but inaccurate

proxy statistics

Approximations

- In-sample fitting once
- Neural networks
- Outcome predictions
 - Machine learning predictors
- Mediators
 - Preliminary outcomes

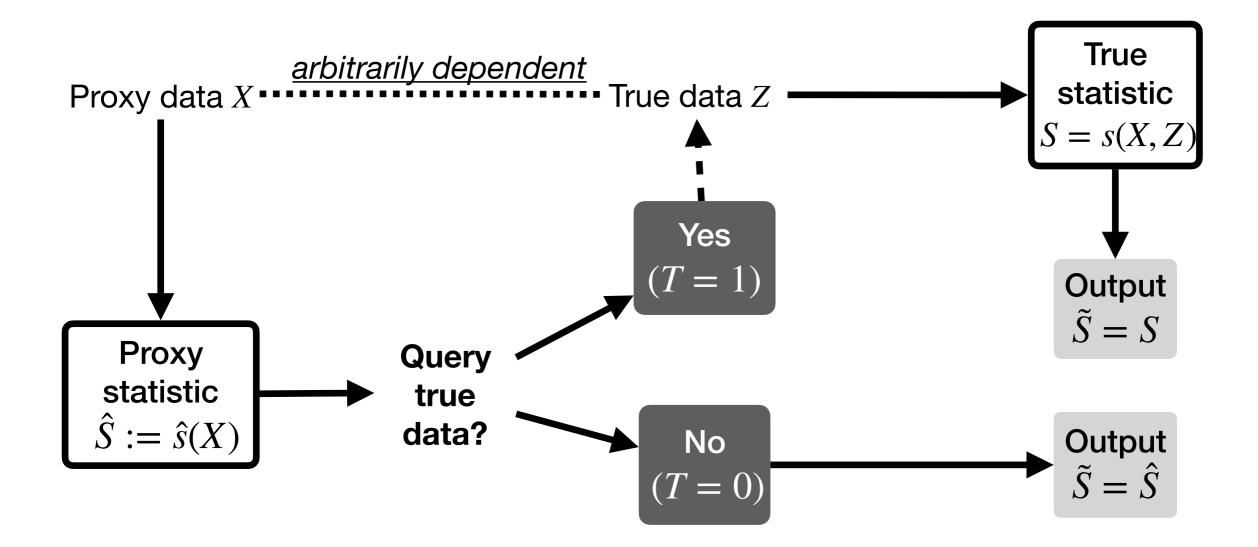
Goal: Use proxy statistics to derive

- **1.** valid statistics for every hypothesis (correctness)
- 2. while selectively computing few true statistics (efficiency)

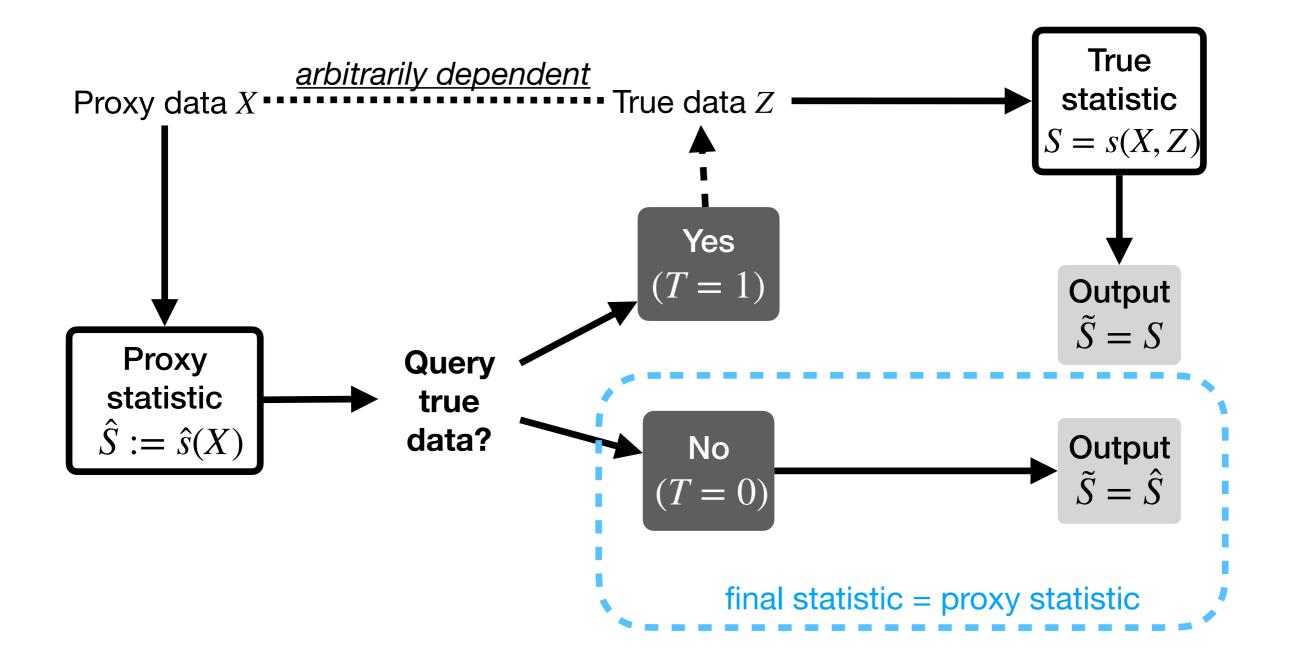
Outline

- 1. The active hypothesis testing framework
 - 1.1. Active p-values
- 2. Application: scCRISPR screening via proximal causal inference
 - 2.1. Proximal causal inference
 - 2.2. Two stage least squares
 - 2.3. Experimental results
- 3. Multiple testing w/ FDR control: active BH
- 4. Conclusion

Active hypothesis testing framework



Active hypothesis testing framework



• Q is a random variable in [0, 1] (proxy p-value).

• *P* is a bona-fide p-value: $\mathbb{P}(P \leq s) \leq s$ for all $s \in [0,1]$ (true p-value).

• Q is a random variable in [0, 1] (proxy p-value).

• *P* is a bona-fide p-value: $\mathbb{P}(P \leq s) \leq s$ for all $s \in [0,1]$ (true p-value).

Two kinds of active p-values:

• Q is a random variable in [0, 1] (proxy p-value).

• *P* is a bona-fide p-value: $\mathbb{P}(P \leq s) \leq s$ for all $s \in [0,1]$ (true p-value).

Two kinds of active p-values:

If Q and P are independent under the null $T \mid Q \sim \text{Bern}(1 - L/f(Q))$ Final p-value $\tilde{P}^{\text{ind}} := (1 - T)Q + T \cdot P$

• Q is a random variable in [0, 1] (proxy p-value).

• *P* is a bona-fide p-value: $\mathbb{P}(P \leq s) \leq s$ for all $s \in [0,1]$ (true p-value).

Two kinds of active p-values:

If Q and P are independent under the null $T \mid Q \sim \text{Bern}(1 - L/f(Q))$ Final p-value $\tilde{P}^{\text{ind}} := (1 - T)Q + T \cdot P$ f: density of Q under the null $L \leq f(q)$ for all q (1-d estimation problem)

• Q is a random variable in [0, 1] (proxy p-value).

• *P* is a bona-fide p-value: $\mathbb{P}(P \leq s) \leq s$ for all $s \in [0,1]$ (true p-value).

Two kinds of active p-values:

If Q and P are independent under the null $T \mid Q \sim \text{Bern}(1 - L/f(Q))$ Final p-value $\tilde{P}^{\text{ind}} := (1 - T)Q + T \cdot P$

If Q and P are <u>arbitrarily dependent</u> let

$$T \mid Q \sim \text{Bern}(1 - Q/2)$$

Final p-value
$$\tilde{P}^{arb-dep} := (1 - T)Q + T \cdot 2P$$

f: density of Q under the null $L \leq f(q)$ for all q(1-d estimation problem)

• Q is a random variable in [0, 1] (proxy p-value).

• *P* is a bona-fide p-value: $\mathbb{P}(P \leq s) \leq s$ for all $s \in [0,1]$ (true p-value).

Two kinds of active p-values:

If Q and P are independent under the null $T \mid Q \sim \text{Bern}(1 - L/f(Q))$ Final p-value $\tilde{P}^{\text{ind}} := (1 - T)Q + T \cdot P$

If Q and P are <u>arbitrarily dependent</u> let $T \mid Q \sim \text{Bern}(1 - Q/2)$ Final p-value $\tilde{P}^{\text{arb-dep}} := (1 - T)Q + T \cdot 2P$ f: density of Q under the null

 $L \leq f(q)$ for all q

(1-d estimation problem)

not likely to sample nulls (if *Q* is predictive of *P*)

Active p-values

• Q is a random variable in [0, 1] (proxy p-value).

• P is a bona-fide p-value: $\mathbb{P}(P \leq s) \leq s$ for all $s \in [0,1]$ (true p-value).

Two kinds of active p-values:

If Q and P are independent under the null $T \mid Q \sim \text{Bern}(1 - L/f(Q))$ Final p-value $\tilde{P}^{\text{ind}} := (1 - T)Q + T \cdot P$

If Q and P are <u>arbitrarily dependent</u> let $T \mid Q \sim \text{Bern}(1 - Q/2)$ Final p-value $\tilde{P}^{\text{arb-dep}} := (1 - T)Q + T \cdot 2P$ f: density of Q under the null

 $L \leq f(q)$ for all q

(1-d estimation problem)

not likely to sample nulls (if *Q* is predictive of *P*) Pays a union bound cost on th

Pays a union bound cost on the true p-value

Active p-values

• Q is a random variable in [0, 1] (proxy p-value).

• *P* is a bona-fide p-value: $\mathbb{P}(P \leq s) \leq s$ for all $s \in [0,1]$ (true p-value).

Two kinds of active p-values:

If Q and P are independent under the null $T \mid Q \sim \text{Bern}(1 - L/f(Q))$ Final p-value $\tilde{P}^{\text{ind}} := (1 - T)Q + T \cdot P$

If Q and P are <u>arbitrarily dependent</u> let $T \mid Q \sim \text{Bern}(1 - Q/2)$ Final p-value $\tilde{P}^{\text{arb-dep}} := (1 - T)Q + T \cdot 2P$ f: density of Q under the null

 $L \leq f(q)$ for all q

(1-d estimation problem)

not likely to sample nulls (if *Q* is predictive of *P*)

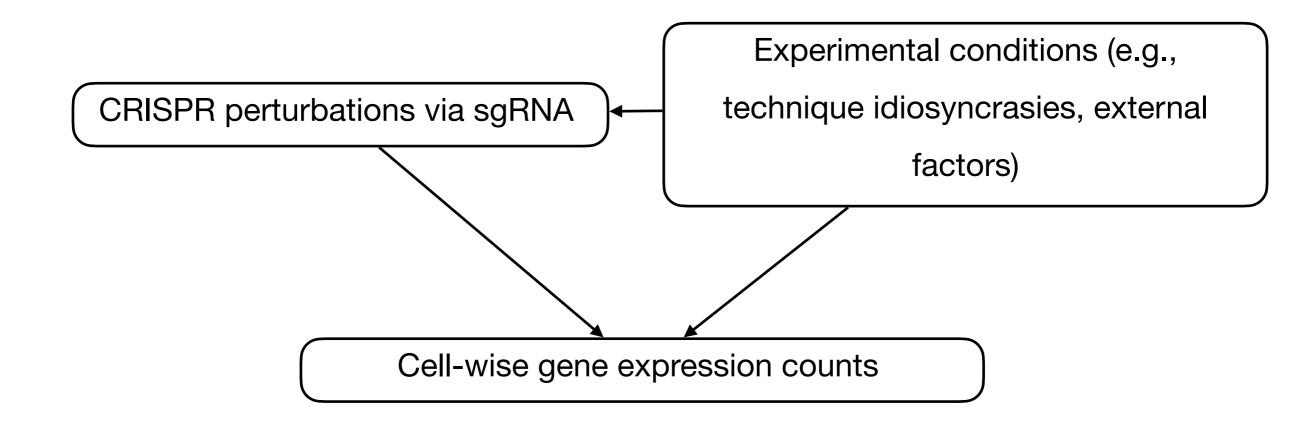
Pays a union bound cost on the true p-value

Theorem (ours): Active p-values $\tilde{P}^{arb-dep}$ and \tilde{P}^{ind} are bona-fide p-values.

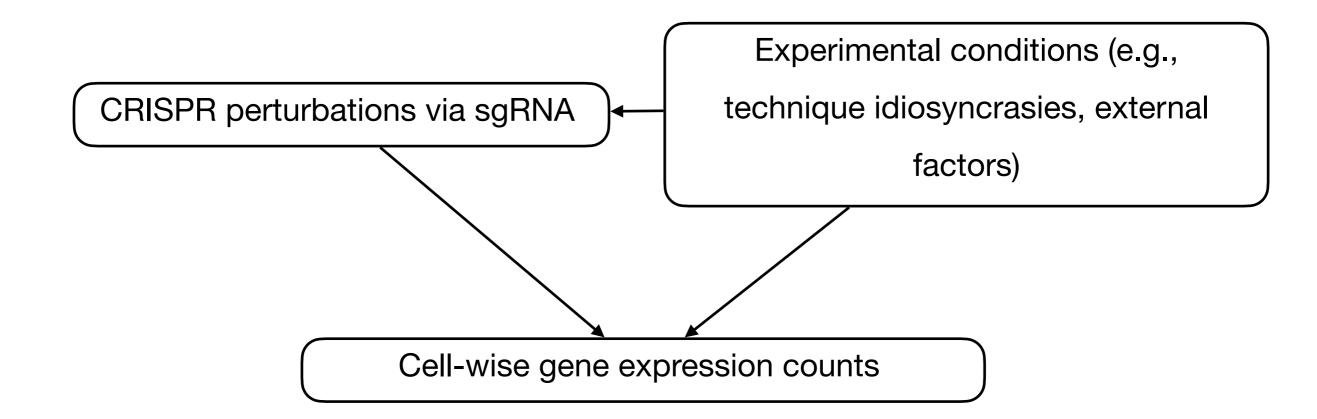
Outline

- 1. The active hypothesis testing framework
 - 1.1. Active p-values
- 2. Application: scCRISPR screening via proximal causal inference
 - 2.1. Proximal causal inference
 - 2.2. Two stage least squares
 - 2.3. Experimental results
- 3. Multiple testing w/ FDR control: active BH
- 4. Conclusion

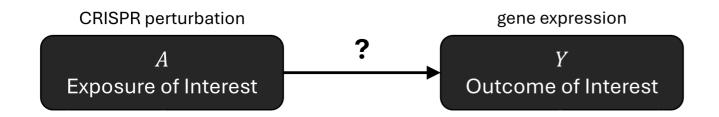
scCRISPR w/ gene perturbations

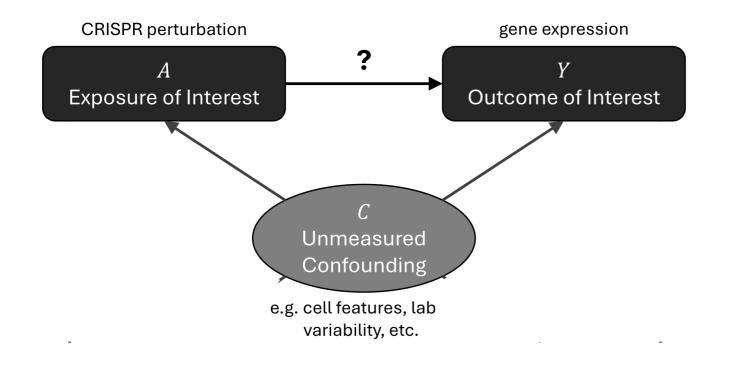


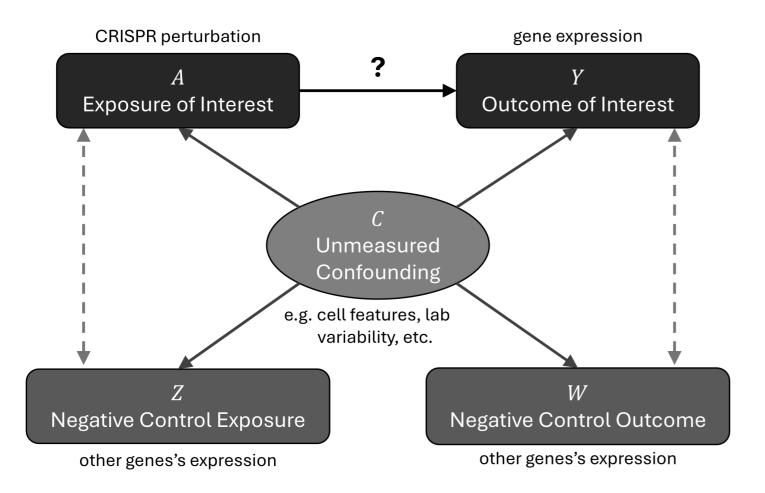
scCRISPR w/ gene perturbations

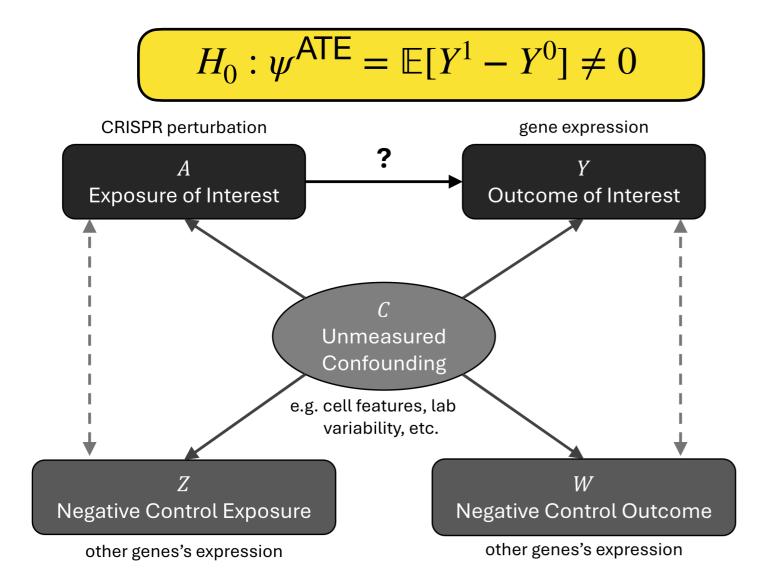


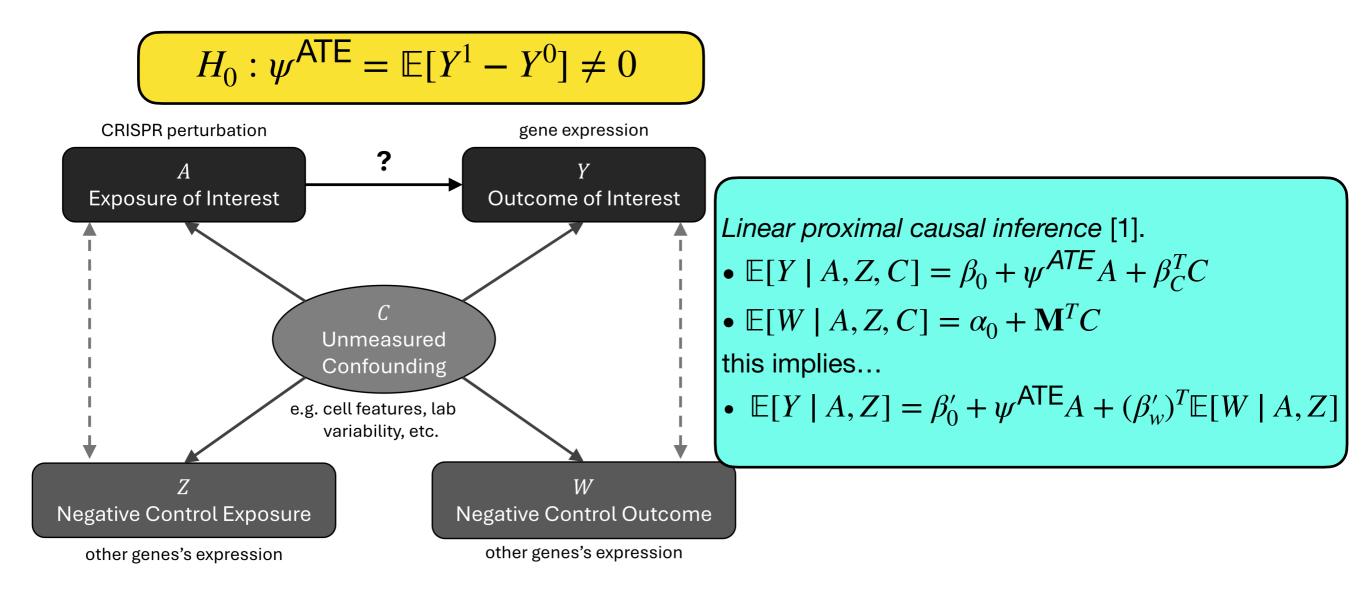
Goal: Test for causal effect of gene perturbation on cell-wise expression counts.

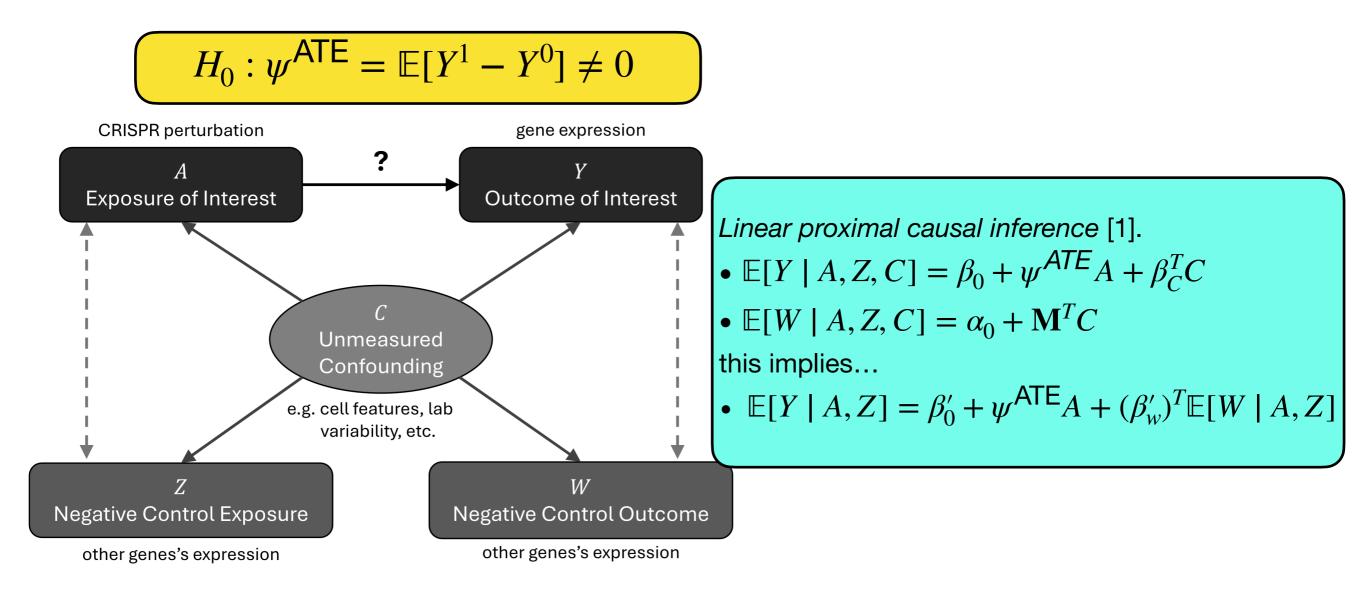












We can run two stage-least squares to approximate $\mathbb{E}[W \mid A, Z]$ and estimate ψ^{ATE} .

Outcomes $Y \in \mathbb{R}^n$

Outcomes $Y \in \mathbb{R}^n$

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$

Outcomes $Y \in \mathbb{R}^n$

Treatments:
$$\overline{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$$

 $\hat{\psi}^{OLS} = (\overline{A}^T \overline{A})^{-1} \overline{A}^T Y$
 $\hat{\sigma}^{OLS} = \sqrt{(\overline{A}^T \overline{A})^{-1}_{1,1} \cdot ||Y - \overline{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ **Proxy** (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}|/\hat{\sigma}^{OLS})$

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ **Proxy** (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}|/\hat{\sigma}^{OLS})$

O(n) runtime —- very fast. (does not account for neg. controls)

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ Proxy (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}| / \hat{\sigma}^{OLS})$

O(n) runtime —- very fast. (does not account for neg. controls)

Treatments + neg. contr. exposures: $\overline{Z} = [\mathbf{1}, A, Z] \in \mathbb{R}^{n \times (d+2)}$

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ Proxy (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}|/\hat{\sigma}^{OLS})$

O(n) runtime —- very fast. (does not account for neg. controls)

Treatments + neg. contr. exposures: $\overline{Z} = [\mathbf{1}, A, Z] \in \mathbb{R}^{n \times (d+2)}$ First stage: $\hat{W} = (\overline{Z}^T \overline{Z})^{-1} \overline{Z}^T W$,

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ Proxy (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}|/\hat{\sigma}^{OLS})$

O(n) runtime —- very fast. (does not account for neg. controls)

Treatments + neg. contr. exposures: $\overline{Z} = [\mathbf{1}, A, Z] \in \mathbb{R}^{n \times (d+2)}$ First stage: $\hat{W} = (\overline{Z}^T \overline{Z})^{-1} \overline{Z}^T W$,

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ Proxy (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}|/\hat{\sigma}^{OLS})$

O(n) runtime —- very fast. (does not account for neg. controls)

Treatments + neg. contr. exposures: $\overline{Z} = [\mathbf{1}, A, Z] \in \mathbb{R}^{n \times (d+2)}$ First stage: $\hat{W} = (\overline{Z}^T \overline{Z})^{-1} \overline{Z}^T W$,

Treatments + est. neg. contr. outcomes: $\bar{W} = [1, A, \hat{W}] \in \mathbb{R}^{n \times (d+2)}$

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ Proxy (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}|/\hat{\sigma}^{OLS})$

O(n) runtime —- very fast. (does not account for neg. controls)

Treatments + neg. contr. exposures: $\overline{Z} = [\mathbf{1}, A, Z] \in \mathbb{R}^{n \times (d+2)}$ First stage: $\hat{W} = (\overline{Z}^T \overline{Z})^{-1} \overline{Z}^T W$,

Treatments + est. neg. contr. outcomes: $\bar{W} = [1, A, \hat{W}] \in \mathbb{R}^{n \times (d+2)}$ Second stage: $\hat{\psi}^{2SLS} = (\bar{W}^T \bar{W}) \bar{W}^T Y$

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ Proxy (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}|/\hat{\sigma}^{OLS})$

O(n) runtime —- very fast. (does not account for neg. controls)

Treatments + neg. contr. exposures: $\overline{Z} = [\mathbf{1}, A, Z] \in \mathbb{R}^{n \times (d+2)}$ First stage: $\hat{W} = (\overline{Z}^T \overline{Z})^{-1} \overline{Z}^T W$,

Treatments + est. neg. contr. outcomes: $\bar{W} = [1, A, \hat{W}] \in \mathbb{R}^{n \times (d+2)}$ Second stage: $\hat{\psi}^{2SLS} = (\bar{W}^T \bar{W}) \bar{W}^T Y$

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ Proxy (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}|/\hat{\sigma}^{OLS})$

O(n) runtime —- very fast. (does not account for neg. controls)

Treatments + neg. contr. exposures: $\overline{Z} = [\mathbf{1}, A, Z] \in \mathbb{R}^{n \times (d+2)}$ First stage: $\hat{W} = (\overline{Z}^T \overline{Z})^{-1} \overline{Z}^T W$,

Treatments + est. neg. contr. outcomes: $\bar{W} = [1, A, \hat{W}] \in \mathbb{R}^{n \times (d+2)}$ Second stage: $\hat{\psi}^{2SLS} = (\bar{W}^T \bar{W}) \bar{W}^T Y$

$$\hat{\sigma}^{2SLS} = \sqrt{\hat{A}^{-1}\hat{B}(\hat{A}^{-1})^T} \text{ where } \hat{A}^{-1}, \hat{B} \in \mathbb{R}^{O(d^2) \times O(d^2)}$$

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ Proxy (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}|/\hat{\sigma}^{OLS})$

O(n) runtime —- very fast. (does not account for neg. controls)

Treatments + neg. contr. exposures: $\overline{Z} = [\mathbf{1}, A, Z] \in \mathbb{R}^{n \times (d+2)}$ First stage: $\hat{W} = (\overline{Z}^T \overline{Z})^{-1} \overline{Z}^T W$,

Treatments + est. neg. contr. outcomes: $\bar{W} = [1, A, \hat{W}] \in \mathbb{R}^{n \times (d+2)}$ Second stage: $\hat{\psi}^{2SLS} = (\bar{W}^T \bar{W}) \bar{W}^T Y$

 $\hat{\sigma}^{2SLS} = \sqrt{\hat{A}^{-1}\hat{B}(\hat{A}^{-1})^{T}} \text{ where } \hat{A}^{-1}, \hat{B} \in \mathbb{R}^{O(d^{2}) \times O(d^{2})}$ **True** (2SLS estimator): $P = 2\Phi(-|\hat{\psi}^{2SLS}|/\hat{\sigma}^{2SLS})$

Outcomes $Y \in \mathbb{R}^n$

Treatments: $\bar{A} = [\mathbf{1}, A] \in \mathbb{R}^{n \times 2}$ $\hat{\psi}^{OLS} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T Y$ $\hat{\sigma}^{OLS} = \sqrt{(\bar{A}^T \bar{A})^{-1}_{1,1} \cdot ||Y - \bar{A}^T \hat{\psi}^{OLS}||_2^2 / (n-2)}$ **Proxy** (OLS estimator): $Q = 2F_{n-2}(-|\hat{\psi}^{OLS}|/\hat{\sigma}^{OLS})$

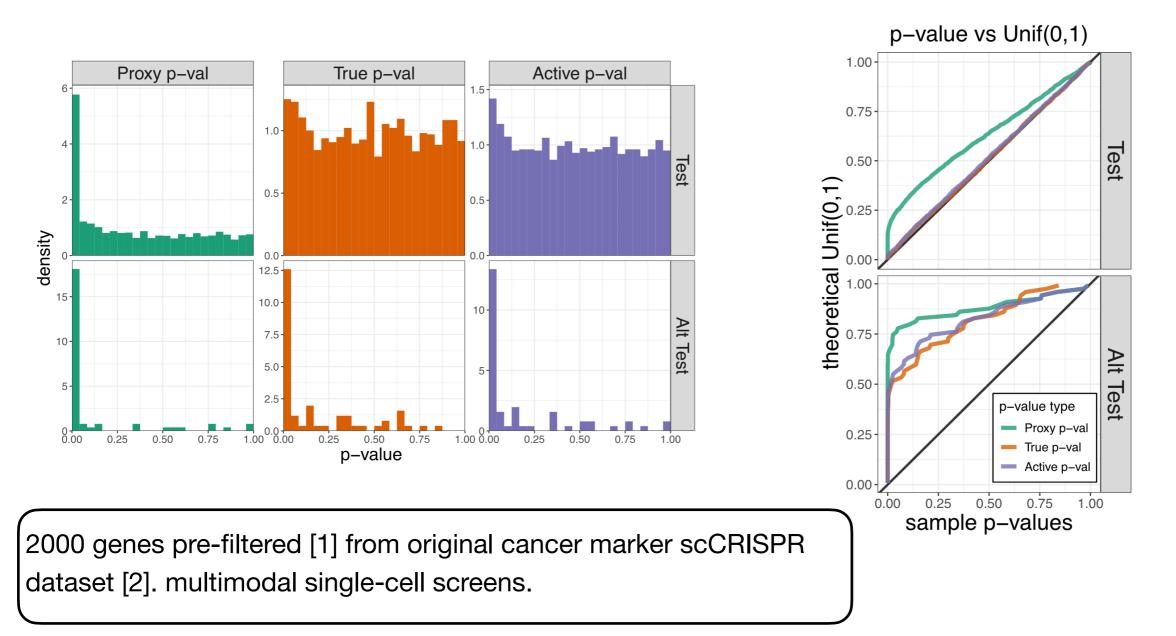
O(n) runtime —- very fast. (does not account for neg. controls)

Treatments + neg. contr. exposures: $\overline{Z} = [\mathbf{1}, A, Z] \in \mathbb{R}^{n \times (d+2)}$ First stage: $\hat{W} = (\overline{Z}^T \overline{Z})^{-1} \overline{Z}^T W$,

Treatments + est. neg. contr. outcomes: $\bar{W} = [1, A, \hat{W}] \in \mathbb{R}^{n \times (d+2)}$ Second stage: $\hat{\psi}^{2SLS} = (\bar{W}^T \bar{W}) \bar{W}^T Y$

 $\hat{\sigma}^{2SLS} = \sqrt{\hat{A}^{-1}\hat{B}(\hat{A}^{-1})^{T}} \text{ where } \hat{A}^{-1}, \hat{B} \in \mathbb{R}^{O(d^{2}) \times O(d^{2})}$ **True** (2SLS estimator): $P = 2\Phi(-|\hat{\psi}^{2SLS}|/\hat{\sigma}^{2SLS})$ $O(nd^4)$ to compute \hat{A}^{-1} and B. $O(d^6)$ to compute $\hat{A}^{-1}\hat{B}(\hat{A}^{-1})^T$. Total complexity: $O(nd^4 + d^6)$

Experimental results on scCRIPSR data



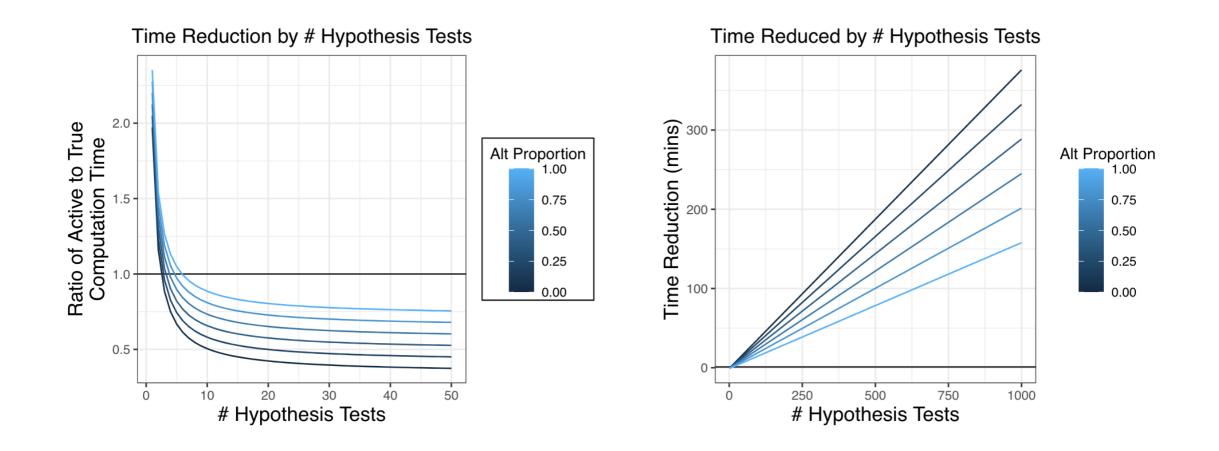
[1] Papalexi et al. Characterizing the molecular regulation of inhibitory immune checkpoints with

multimodal single-cell screens. Nature Genetics, 2021.

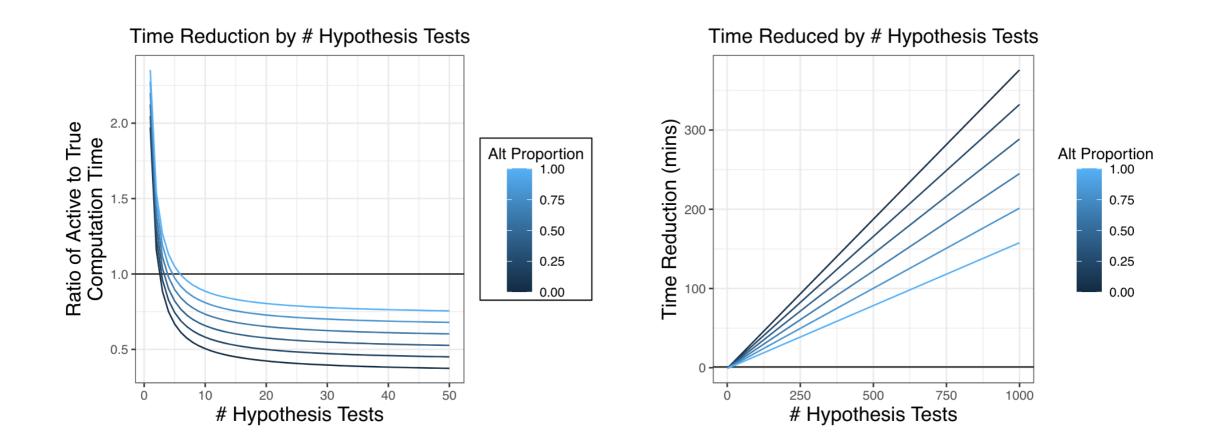
[2] Townes et al. Feature selection and dimension reduction for single-cell RNA-Seq

10/14 based on a multinomial model Genome Biology, 2-10.

Experimental results on computation time



Experimental results on computation time



Significant reduction in computation time, while maintaining power.

Multiple testing for *K* hypotheses $--I_0 \subseteq [K]$ are the true nulls. Output discovery set $R \subseteq [K]$ s.t. *false discovery rate (FDR)* $FDR = \mathbb{E}\left[\frac{|I_0 \cap R|}{|R| \lor 1}\right] \le \alpha$ for fixed $\alpha \in [0,1]$

Multiple testing for *K* hypotheses $--I_0 \subseteq [K]$ are the true nulls. Output discovery set $R \subseteq [K]$ s.t. *false discovery rate (FDR)* $FDR = \mathbb{E}\left[\frac{|I_0 \cap R|}{|R| \lor 1}\right] \le \alpha$ for fixed $\alpha \in [0,1]$

Active BH procedure:

Access to $(Q_1, ..., Q_K)$ proxy p-values, and $(P_1, ..., P_K)$ are independent true p-values. Apply Benjamini-Hochberg (BH) procedure to $(\tilde{P}_1, ..., \tilde{P}_K)$ (any active p-values), i.e., $k^* = \max\left\{k \in [K] : \sum_{i=1}^K \mathbf{1}\{\tilde{P}_i \le \alpha k/K\} \ge k\right\}$ and $R = \{k \in [K] : P_k \le \alpha k^*/K\}$

Multiple testing for *K* hypotheses $--I_0 \subseteq [K]$ are the true nulls. Output discovery set $R \subseteq [K]$ s.t. *false discovery rate (FDR)* $FDR = \mathbb{E}\left[\frac{|I_0 \cap R|}{|R| \lor 1}\right] \le \alpha$ for fixed $\alpha \in [0,1]$

Active BH procedure:

Access to $(Q_1, ..., Q_K)$ proxy p-values, and $(P_1, ..., P_K)$ are independent true p-values. Apply Benjamini-Hochberg (BH) procedure to $(\tilde{P}_1, ..., \tilde{P}_K)$ (any active p-values), i.e., $k^* = \max\left\{k \in [K] : \sum_{i=1}^K \mathbf{1}\{\tilde{P}_i \le \alpha k/K\} \ge k\right\}$ and $R = \{k \in [K] : P_k \le \alpha k^*/K\}$

Theorem (ours): If $(P_1, ..., P_K)$ are independent, $(Q_1, ..., Q_K)$ are arbitrarily dependent, and (P_i, Q_i) satisfies active p-value dependence requirement, then FDR $\leq \alpha(1 + \log(1/\alpha))$.

Active hypothesis testing framework + application for proximal causal inference in scCRISPR screening

- Active hypothesis testing framework + application for proximal causal inference in scCRISPR screening
- Extensions

- Active hypothesis testing framework + application for proximal causal inference in scCRISPR screening
- Extensions
 - E-value versions, i.e., active e-value and active e-BH

- Active hypothesis testing framework + application for proximal causal inference in scCRISPR screening
- Extensions
 - E-value versions, i.e., active e-value and active e-BH
 - Interactive + multilevel computation of proxies.

- Active hypothesis testing framework + application for proximal causal inference in scCRISPR screening
- Extensions
 - E-value versions, i.e., active e-value and active e-BH
 - Interactive + multilevel computation of proxies.
 - Joint density estimation of proxy + true p-value

- Active hypothesis testing framework + application for proximal causal inference in scCRISPR screening
- Extensions
 - E-value versions, i.e., active e-value and active e-BH
 - Interactive + multilevel computation of proxies.
 - Joint density estimation of proxy + true p-value

Thanks!

"Active multiple testing with proxy p-values and e-values" <u>arXiv:2502.05715</u>