Active multiple testing w/
proxy p-value and e-values

DeGroot Workshop @ CMU 2025

Joint work with:

Catherine Wang Larry Wasserman

4
@
i

Kathryn Roeder Aaditya Ramdas  Mellon

University

s 0,
Y o N

Carnegie



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints

2 /14



Hypothesis testing under resource constraints




Hypothesis testing under resource constraints




Hypothesis testing under resource constraints




Hypothesis testing under resource constraints




Hypothesis testing under resource constraints




Hypothesis testing under resource constraints




Hypothesis testing under resource constraints




Hypothesis testing under resource constraints




Hypothesis testing under resource constraints




Hypothesis testing under resource constraints




Hypothesis testing under resource constraints

Goal: Use proxy statistics to derive




Hypothesis testing under resource constraints

Large scale hypothesis testing can meet resource ...but we often have “cheap” but inaccurate
constraints... proxy statistics
e Computational constraints: Computing the statistic ™ Approximations
for every hypothesis is slow * |n-sample fitting once
e (Cross-fitting + sampling. * Neural networks
e Nonconvex optimization.
e (Cost constraints: obtaining the data is expensive = Outcome predictions
¢ treating patients  Machine learning predictors
e sending out coupons/promotions.
e Jime constraints: true outcome is in the future. = \ediators

e panel/longitudinal experiments * Preliminary outcomes

Goal: Use proxy statistics to derive
1. valid statistics for every hypothesis (correctness)
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¢ treating patients  Machine learning predictors
e sending out coupons/promotions.
e Jime constraints: true outcome is in the future. = \ediators

e panel/longitudinal experiments * Preliminary outcomes

Goal: Use proxy statistics to derive
1. valid statistics for every hypothesis (correctness)
2. while selectively computing few true statistics (efficiency)

2 /14



Outline

1. The active hypothesis testing framework
1.1. Active p-values
2. Application: scCRISPR screening via proximal causal inference
2.1. Proximal causal inference
2.2. Two stage least squares
2.3. Experimental results
3. Multiple testing w/ FDR control: active BH

4. Conclusion
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Active p-values

p
- ) is a random variable in [0, 1] (proxy p-value).

- P is a bona-fide p-value: P(P < s) < s forall s € [0,1] (true p-value). )
\§
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- P is a bona-fide p-value: P(P < s) < s forall s € [0,1] (true p-value). )
\§

Two kinds of active p-values:

.

If Q and P are independent under the null J : density of Q under the null

T | O~ Bern(l — L/f(Q)) L < f(g) forall g
Final p-value pind .— (1-T)O+T-P

y (1-d estimation problem)

final p-value paro-dep . (1-T)O+T:2P

If O and P are arbitrarily dependent let
T|O~Bern(l—-0/2)

J

( Theorem (ours): Active p-values parb-dep and pind are bona-fide p-values. j
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Outline

2. Application: scCRISPR screening via proximal causal inference
2.1. Proximal causal inference
2.2. Two stage least squares

2.3. Experimental results
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scCRISPR w/ gene perturbations

Experimental conditions (e.g.,

(CRISPR perturbations via sgRNA )4— technique idiosyncrasies, external

factors)
- Y,

/

( Cell-wise gene expression counts )

[ Goal: Test for causal effect of gene perturbation on cell-wise expression counts. ]
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Proximal causal inference via
negative controls

[ Hy : wATE = E[Y! — Y] # 0 )

CRISPR perturbation gene expression
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Linear proximal causal inference [1].

« E[Y | A, Z, Cl =y +wTEA + glC

£ ¢ E[W|A,ZCl=aq,+M/C
Unmeasured
Confounding this implies...
e.g. cell features, lab ] [E[Y | A, Z] — ﬁ(l) + WATEA + (ﬂ;V)T[E[W | A, Z]

variability, etc.

v v )

Z W
Negative Control Exposure Negative Control Outcome

other genes’s expression other genes’s expression

We can run two stage-least squares to approximate E[W | A, Z] and estimate y/ATE.

[1] Liu et al. Regression-Based Proximal Causal Inference.
8 /14 arXiv:2402.00335, 2024.
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Computing the proxy and true
p-value via least squares

Outcomes Y € R”
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O(n) runtime —- very fast.
(does not account for neg.
controls)

O(nd*) to compute A~!and B.
0(d®) to compute A"'B(A~HT.
Total complexity:

O(nd* + d%



Experimental results on
scCRIPSR data

p-value vs Unif(0,1)
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[1] Papalexi et al. Characterizing the molecular regulation of inhibitory immune

checkpoints with

multimodal single-cell screens. Nature Genetics, 2021.
[2] Townes et al. Feature selection and dimension reduction for single-cell RNA-Seq
10/14 based on a multinomial model Genome Biology, 2-10.
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Active BH procedure:
Access to (O, ..., Og) proxy p-values, and (P, ..., Pg) are independent true p-values.
Apply Benjamini-Hochberg (BH) procedure to (Pl, ees PK) (any active p-values), i.e.,
K
k*=max § k€ [K]: ) 1{P,<ak/K} >k p and R = {k € [K] : P, < ak*/K}
i=1
\_ V,
e )
Theorem (ours): If (P, ..., Px) are independent, (O, ..., Q) are arbitrarily dependent, and (P,, Q,)
satisfies active p-value dependence requirement, then FDR < a(1 + log(1/a)).
\_ v,
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Thanks!

“*Active multiple testing with proxy p-values and e-values”
arXiv:2502.05715
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