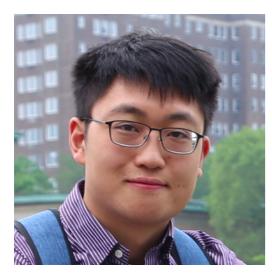
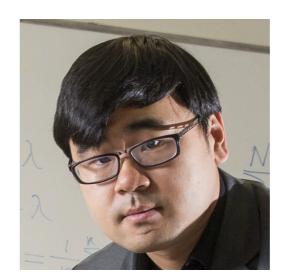
A unified framework for bandit multiple testing

NeurIPS 2021

Joint work with:



Ziyu Xu (Neil) (CMU)



(Waterloo)

Ruodu Wang Aaditya Ramdas (CMU)

Subjects

In a sequential clinical trial, adaptively allocate subjects to minimize the number of trials required to:

- 1. Find most of the drug candidates with positive effect (true discoveries)
- 2. Make sure we don't erroneously believe ineffective drug candidates are effective (make false discoveries).

The multiple testing problem

K hypotheses we wish to test H_1, H_2, \ldots, H_K e.g. "this drug candidate has no positive effect."

The set of <u>null hypotheses</u> is $N \subseteq \{1,...,K\}$

e.g. drugs candidates that actually have no positive effect

Procedure outputs a <u>discovery set</u> $S \subseteq \{1,...,K\}$

We want to control the frequency of making "false discoveries".

$$FDP := \frac{|N \cap S|}{|S| \vee 1} \qquad FDR := \mathbb{E}[FDP]$$

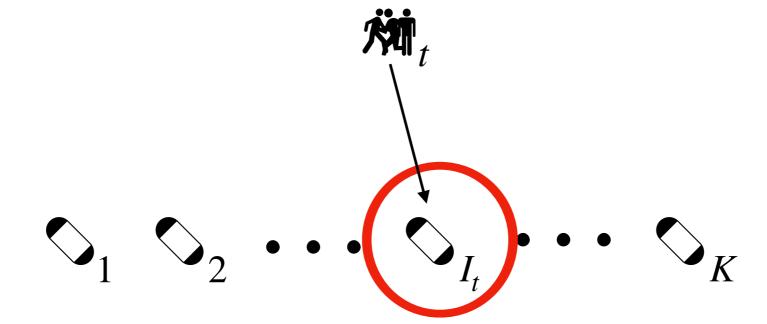
FDR is required to be controlled under a fixed constant $\delta \in (0,1)$

The bandit approach to multiple testing

The multi-armed bandit models the adaptive allocation of new subjects to one of the treatments. $\Re \rightarrow \bigcirc$

 \emph{k} -th arm is associated with the hypothesis (drug) $\emph{H}_\emph{k}$

At each time step t select a single arm I_t and sample $X_{I_t,t}$



When we stop sampling, produce S that satisfies: $FDR \leq \delta$

Prior work: p-values (+sequential analog: p-processes)

Uses rewards sampled from arm k by time t to construct:

a <u>p-process</u> $(p_{k,t})_{t\in\mathbb{N}}$ for each hypothesis k

 $\Pr(\exists t \in \mathbb{N} : p_{k,t} \le s) \le s \text{ for all } s \in (0,1) \text{ when } k \in \mathbb{N}$

No restrictions on $(p_{k,t})_{t\in\mathbb{N}}$ when $k\notin\mathbb{N}$

(BH procedure at level α) Output the largest set satisfying:

$$\max_{k \in S} p_{k,t} \le \frac{\alpha |S|}{K}$$

Theorem (Benjamini and Hochberg 1995, Benjamini and Yekutieli 2001)

FDR $\leq \alpha$ $p_{1,t},...,p_{K,t}$ are independent

FDR $\leq \alpha \log(1/\alpha)$ $p_{1,t},...,p_{K,t}$ are dependent only through sampling

FDR $\lesssim \alpha \log(K)$ $p_{1,t},...,p_{K,t}$ are arbitrarily dependent

Limitations of p-processes

Adaptivity in the sampling algorithm ($log(1/\alpha)$ blow up)

Using p-processes requires correction by an extra $\log K$ factor when there is arbitrary dependence between $p_{1,t}, p_{2,t}, ..., p_{K,t}$ Dependence can arise from:

- Arbitrary dependence among rewards $X_{1,t}, X_{2,t}, ..., X_{K,t}$ (combinatorial bandits)
- Hypotheses that test a property of multiple arms (e.g. is the covariance of the rewards of two arms 0?)
- Using previous data that may have come from dependent sources.

E-processes: an alternative to p-processes

Let $e_1, e_2, ..., e_K$ be k e-values corresponding to $H_1, H_2, ..., H_K$

 e_k is an <u>e-value</u> iff $\mathbb{E}[e_k] \leq 1$ and e_k is nonnegative when $k \in \mathbb{N}$

E-processes are the sequential analog of e-values.

 $(e_{k,t})_{t\in\mathbb{N}}$ is an <u>e-process</u> iff $e_{k,\tau}$ is an e-value for all <u>stopping times</u> τ

(random time that is a function of the already observed rewards)

Recently developed alternative to p-values and p-processes, and are fundamentally connected to martingales. (Grünwald et al. 2020, Shafer 2020, Ramdas et al. 2020)

E-values for multiple testing: e-BH

We make no assumptions on the e-values - they may be arbitrarily dependent

self-consistency at level
$$\alpha$$
 property: $\min_{k \in S} e_k \ge \frac{K}{\alpha |S|}$

Theorem (Wang and Ramdas 2020)

 $\mathrm{FDR} \leq \alpha$ for any self-consistent procedure on e-values.

Fewer assumptions and applies to more procedures than BH

e-BH: outputs largest self-consistent set.

 $1/e_k$ is a p-value. Thus, e-BH is identical to applying BH on inverse of e-values.

E-processes in the bandit setting

Uses rewards sampled from arm k by time t to construct an e-process $(e_{k,t})_{t\in\mathbb{N}}$ for each arm/hypothesis k

When the algorithm stops sampling (at stopping time τ) (e-BH procedure at level δ) Output the largest set satisfying:

$$\min_{k \in S} e_k \ge \frac{k}{\delta |S|}$$

 $e_{1,\tau}, e_{2,\tau}, ..., e_{K,\tau}$ are e-values.

Output of e-BH guarantees $FDR \leq \delta$

regardless of dependence structure (e.g. adaptive sampling algorithm, dependence among rewards etc.) among the e-values

Power and sample complexity

TPR :=
$$\mathbb{E}\left[\frac{|A \cap S|}{|A|}\right] \quad A := \{1, ..., K\} \setminus N$$

When we stop sampling, produce S that satisfies:

$$FDR \leq \delta$$
, $TPR \geq 1 - \delta$

power constraint

Sample complexity: # of samples required to output S with the above guarantees.

Theorem:

Under the same assumptions (i.e. independent and bounded rewards, single arm, etc.) and sampling strategy as the p-process algorithm (Jamieson and Jain 2018),

E-processes with e-BH achieve matching sample complexity bounds w/p-processes and BH (up to a constant).

Conclusion: a unified framework for FDR control

Any algorithm that outputs discoveries through e-BH has valid FDR control regardless of the underlying data distributions or hypotheses being tested.

Thus, e-processes and e-BH provide a framework for designing algorithms with valid FDR control in any situation, including:

- Dependent reward distributions
- Hypotheses involving multiple arms
- Multi-agent scenarios where agents want to combine collected data
- Structural constraints on the discovery set

Provably matches performance of best algorithm for basic single arm bandit case (Jamieson and Jain 2018)

A unified framework for bandit multiple testing

2nd WSSAF Conference

Joint work with:

Ziyu Xu (Neil) (CMU)

(Waterloo)

Ruodu Wang Aaditya Ramdas (CMU)

Link to paper: https://arxiv.org/abs/2107.07322

